如何表示两个向量的夹角?
1个回答
展开全部
向量加法与减法的几何表示:平行四边形法则、三角形法则。
向量加法有如下规律:
+
=
+
(交换律);
+(
+c)=(
+
)+c
(结合律);
+0=
+(-
)=0.
1.实数与向量的积:实数
与向量
的积是一个向量。
(1)|
|=|
|•|
|;
(2)
当
>0时,
与
的方向相同;当
<0时,
与
的方向相反;当
=0时,
=0.
(3)若
=(
),则
•
=(
).
两个向量共线的充要条件:
(1)
向量b与非零向量
共线的充要条件是有且仅有一个实数
,使得b=
.
(2)
若
=(
),b=(
)则
‖b
.
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量
,有且只有一对实数
,
,使得
=
e1+
e2.
2.P分有向线段
所成的比:
设P1、P2是直线
上两个点,点P是
上不同于P1、P2的任意一点,则存在一个实数
使
=
,
叫做点P分有向线段
所成的比。
当点P在线段
上时,
>0;当点P在线段
或
的延长线上时,
<0;
分点坐标公式:
3.
向量的数量积:
(1).向量的夹角:
(2).两个向量的数量积:
(3).向量的数量积的性质:
(4)
.向量的数量积的运算律:
4.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
向量加法有如下规律:
+
=
+
(交换律);
+(
+c)=(
+
)+c
(结合律);
+0=
+(-
)=0.
1.实数与向量的积:实数
与向量
的积是一个向量。
(1)|
|=|
|•|
|;
(2)
当
>0时,
与
的方向相同;当
<0时,
与
的方向相反;当
=0时,
=0.
(3)若
=(
),则
•
=(
).
两个向量共线的充要条件:
(1)
向量b与非零向量
共线的充要条件是有且仅有一个实数
,使得b=
.
(2)
若
=(
),b=(
)则
‖b
.
平面向量基本定理:
若e1、e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量
,有且只有一对实数
,
,使得
=
e1+
e2.
2.P分有向线段
所成的比:
设P1、P2是直线
上两个点,点P是
上不同于P1、P2的任意一点,则存在一个实数
使
=
,
叫做点P分有向线段
所成的比。
当点P在线段
上时,
>0;当点P在线段
或
的延长线上时,
<0;
分点坐标公式:
3.
向量的数量积:
(1).向量的夹角:
(2).两个向量的数量积:
(3).向量的数量积的性质:
(4)
.向量的数量积的运算律:
4.主要思想与方法:
本章主要树立数形转化和结合的观点,以数代形,以形观数,用代数的运算处理几何问题,特别是处理向量的相关位置关系,正确运用共线向量和平面向量的基本定理,计算向量的模、两点的距离、向量的夹角,判断两向量是否垂直等。由于向量是一新的工具,它往往会与三角函数、数列、不等式、解几等结合起来进行综合考查,是知识的交汇点。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询