高中数学讲课视频 [高中数学导入法浅议]
1个回答
展开全部
高超的导课艺术是一种创造,是教师智慧的结晶,它为一堂课奠定了成功的基础。以下,通过本人在课堂教学中的实践,谈一谈高中数学课的导入方法,在教学中常用的导入方法有以下几种:
一、设疑式导入法
有针对性地设置相宜、精当的问题导入,这是教学中常用的一种导入方法,即设疑式导入法。心理学上认为:思维过程通常是从需要应付某种困难,解决某个问题开始,概括地说,思维总是从某个问题开始。根据这个原理,新课的导入,教师要有意识地设置一些既体现教学重点又饶有趣味的问题,诱发学生学习的欲望,创设逐疑探秘的情境,激发学生的思维。教师对某些内容故意制造疑团而成为悬念,提出一些必须学习新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。例:讲《余弦定理》时,可如下设置:我们都熟悉直角三角形的三边满足勾股定理:c2=a2+b2,那么非直角三角形的三边关系怎样呢?锐角三角形的三边是否有c2=a2+b2-x?钝角三角形中钝角的对边是否满足关系c2=a2+b2+x?假若有以上关系,那么x=?教师从这个具有吸引力和启发性的“设疑”引入了对余弦定理的推证。运用此法必须做到:一是巧妙设疑。要针对教材的关键、重点和难点,从新的角度巧妙设问。此外,所设的疑点要有一定的难度,要能使学生暂时处于困惑状态,营造一种“心求通而未得通,口欲言而不能言”的情境。二是以疑激思,善问善导。设疑质疑还只是设疑导入法的第一步,更重要的是要以此激发学生的思维,使学生的思维尽快活跃起来。因此,教师必须掌握一些设问的方法与技巧,并善于引导,使学生学会思考和解决问题。
二、悬念导入法
所谓悬念,通常是指对那些悬而未决的问题和现象的关切心情。悬念能使人们产生心理追踪,诱导人们兴致勃勃地去猜测,乃至欲罢不能,非要弄个水落石出不可的效果,把悬念的这种作用引进课堂,在教学过程中巧设悬念是促进思维活动,激发学生学习兴趣的常用的有效方法。悬念导入法制造悬念的目的主要有两点:一是激发兴趣,二是启动思维。悬念一般是出乎人们预料,或展示矛盾,或让人迷惑不解,常能造成学生心理上的焦虑、渴望和兴奋,只想打破砂锅问到底,尽快知道究竟,而这种心态正是教学所需要的“愤”和“悱”的状态。一般来讲,数学中的悬念需要教师在深入钻研教材与分析学生知识储备的基础上进行精心设计、精心准备。例如:“等比数列前N项和”知识的教学,可利用学生已有的对珠穆朗玛峰高度的认识,引导学生从“折纸”这种常见的活动出发,让学生体会一张薄薄的纸片只需对折不多的次数,其厚度就会大幅增长,那么教师指出“有一种纸板的厚度是1mm,只需将其对折23次其厚度就可超过珠穆朗玛峰高度”的论断,使学生心理形成强烈的反差,形成悬念,激起学生强烈的求知欲望。
需要说明的是:设疑导入法与悬念导入法有相通之处,但又不完全相同。前者重在“疑”;后者重在疑的同时更要“悬”。
三、温固知新导入法
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。
从复习旧知识的基础上提出新问题,在我们的教学中是被大家经常和广泛应用的一种引入新课的方法。这种方法不但符合学生的认知规律,而且为学生学习新知识铺路搭桥。教师在引课当中应注意抓住新旧知识的某些联系,在提问旧知识时引导学生思考、联想、分析,使学生感受到新知识就是旧知识的引申和拓展。这样不但使学生复习巩固旧知识,而且可把新知识由浅到深、由简单到复杂、由低层次到高层次地建立在旧知识的基础上,从而有利于用知识的联系来启发思维,促进新知识的理解和掌握,消除学生对新知识的恐惧和陌生心理,及时准确地掌握新旧知识的联系,达到“温故而知新”的效果。例如:讲三角函数的二倍角公式时,可以在复习回忆两角和公式的基础上顺利导入,讲半角公式可以在复习回忆二倍角公式的基础上顺利导入。
运用此法要注意如下几点:一要找准新旧知识的联结点,而联结点的确定又建立在对教材认真分析和对学生深入了解的基础之上。二是搭桥铺路,巧设契机。复习、练习、提问等都只是手段,一方面要通过有针对性的复习为学习新知识作好铺垫,另一方面在复习的过程中又要通过各种巧妙的方式设置难点和疑问,使学生思维暂时出现困惑或受到阻碍,从而激发学生思维的积极性,创造教授新知识的契机。
四、直接导入法
有时我们谈话、写文章习惯开门见山,这样主体突出、论点鲜明。有的老师有时上课并没有绕圈子,而是直接说出本节课要学习的主要内容。这样做,教学重点突出,能使学生很快地把注意力集中在教学内容最本质、最重要的问题研究之上。当一些新授的数学知识难以借助旧知识引入时,可以以开门见山地点出课题,这样,立即唤起学生学习的兴趣。例如,在讲《二面角》的内容时,可这样引入:“两条直线所成的角、直线和平面所成的角,我们已经掌握了它们的度量方法,那么两个平面所成的角怎样度量呢?这节课我们就来学习这个内容——二面角和它的平面角!”(板书课题),这样导入,直截了当,促使学生迅速地把精力集中到新知识的探索追求中。
直接导入法是教师直接从课本的课题中提出新课的学习重点、难点和教学目的,以引起学生的有意注意,诱发探求新知识的兴趣,使学生直接进入学习状态。它的设计思路:教师用简捷明快的讲述或设问,直接点题导入新课。
总之,教师在课堂教学开始时,要根据教材的内容、学生的实际情况,灵活多变的选择相应的导入方式,使课堂教学趋于完美,达到事半功倍的效果。
“教无定法,贵在得法”。教师善“导”,学生方能“入”。数学的导入法很多,但无论哪种导入都要重视学生的年龄特点、认知规律及数学实际,并根据具体教学内容科学设计、灵活运用。其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
一、设疑式导入法
有针对性地设置相宜、精当的问题导入,这是教学中常用的一种导入方法,即设疑式导入法。心理学上认为:思维过程通常是从需要应付某种困难,解决某个问题开始,概括地说,思维总是从某个问题开始。根据这个原理,新课的导入,教师要有意识地设置一些既体现教学重点又饶有趣味的问题,诱发学生学习的欲望,创设逐疑探秘的情境,激发学生的思维。教师对某些内容故意制造疑团而成为悬念,提出一些必须学习新知识才能解答的问题,点燃学生的好奇之火,激发学生的求知欲,从而形成一种学习的动力。例:讲《余弦定理》时,可如下设置:我们都熟悉直角三角形的三边满足勾股定理:c2=a2+b2,那么非直角三角形的三边关系怎样呢?锐角三角形的三边是否有c2=a2+b2-x?钝角三角形中钝角的对边是否满足关系c2=a2+b2+x?假若有以上关系,那么x=?教师从这个具有吸引力和启发性的“设疑”引入了对余弦定理的推证。运用此法必须做到:一是巧妙设疑。要针对教材的关键、重点和难点,从新的角度巧妙设问。此外,所设的疑点要有一定的难度,要能使学生暂时处于困惑状态,营造一种“心求通而未得通,口欲言而不能言”的情境。二是以疑激思,善问善导。设疑质疑还只是设疑导入法的第一步,更重要的是要以此激发学生的思维,使学生的思维尽快活跃起来。因此,教师必须掌握一些设问的方法与技巧,并善于引导,使学生学会思考和解决问题。
二、悬念导入法
所谓悬念,通常是指对那些悬而未决的问题和现象的关切心情。悬念能使人们产生心理追踪,诱导人们兴致勃勃地去猜测,乃至欲罢不能,非要弄个水落石出不可的效果,把悬念的这种作用引进课堂,在教学过程中巧设悬念是促进思维活动,激发学生学习兴趣的常用的有效方法。悬念导入法制造悬念的目的主要有两点:一是激发兴趣,二是启动思维。悬念一般是出乎人们预料,或展示矛盾,或让人迷惑不解,常能造成学生心理上的焦虑、渴望和兴奋,只想打破砂锅问到底,尽快知道究竟,而这种心态正是教学所需要的“愤”和“悱”的状态。一般来讲,数学中的悬念需要教师在深入钻研教材与分析学生知识储备的基础上进行精心设计、精心准备。例如:“等比数列前N项和”知识的教学,可利用学生已有的对珠穆朗玛峰高度的认识,引导学生从“折纸”这种常见的活动出发,让学生体会一张薄薄的纸片只需对折不多的次数,其厚度就会大幅增长,那么教师指出“有一种纸板的厚度是1mm,只需将其对折23次其厚度就可超过珠穆朗玛峰高度”的论断,使学生心理形成强烈的反差,形成悬念,激起学生强烈的求知欲望。
需要说明的是:设疑导入法与悬念导入法有相通之处,但又不完全相同。前者重在“疑”;后者重在疑的同时更要“悬”。
三、温固知新导入法
温固知新的教学方法,可以将新旧知识有机的结合起来,使学生从旧知识的复习中自然获得新知识。
从复习旧知识的基础上提出新问题,在我们的教学中是被大家经常和广泛应用的一种引入新课的方法。这种方法不但符合学生的认知规律,而且为学生学习新知识铺路搭桥。教师在引课当中应注意抓住新旧知识的某些联系,在提问旧知识时引导学生思考、联想、分析,使学生感受到新知识就是旧知识的引申和拓展。这样不但使学生复习巩固旧知识,而且可把新知识由浅到深、由简单到复杂、由低层次到高层次地建立在旧知识的基础上,从而有利于用知识的联系来启发思维,促进新知识的理解和掌握,消除学生对新知识的恐惧和陌生心理,及时准确地掌握新旧知识的联系,达到“温故而知新”的效果。例如:讲三角函数的二倍角公式时,可以在复习回忆两角和公式的基础上顺利导入,讲半角公式可以在复习回忆二倍角公式的基础上顺利导入。
运用此法要注意如下几点:一要找准新旧知识的联结点,而联结点的确定又建立在对教材认真分析和对学生深入了解的基础之上。二是搭桥铺路,巧设契机。复习、练习、提问等都只是手段,一方面要通过有针对性的复习为学习新知识作好铺垫,另一方面在复习的过程中又要通过各种巧妙的方式设置难点和疑问,使学生思维暂时出现困惑或受到阻碍,从而激发学生思维的积极性,创造教授新知识的契机。
四、直接导入法
有时我们谈话、写文章习惯开门见山,这样主体突出、论点鲜明。有的老师有时上课并没有绕圈子,而是直接说出本节课要学习的主要内容。这样做,教学重点突出,能使学生很快地把注意力集中在教学内容最本质、最重要的问题研究之上。当一些新授的数学知识难以借助旧知识引入时,可以以开门见山地点出课题,这样,立即唤起学生学习的兴趣。例如,在讲《二面角》的内容时,可这样引入:“两条直线所成的角、直线和平面所成的角,我们已经掌握了它们的度量方法,那么两个平面所成的角怎样度量呢?这节课我们就来学习这个内容——二面角和它的平面角!”(板书课题),这样导入,直截了当,促使学生迅速地把精力集中到新知识的探索追求中。
直接导入法是教师直接从课本的课题中提出新课的学习重点、难点和教学目的,以引起学生的有意注意,诱发探求新知识的兴趣,使学生直接进入学习状态。它的设计思路:教师用简捷明快的讲述或设问,直接点题导入新课。
总之,教师在课堂教学开始时,要根据教材的内容、学生的实际情况,灵活多变的选择相应的导入方式,使课堂教学趋于完美,达到事半功倍的效果。
“教无定法,贵在得法”。教师善“导”,学生方能“入”。数学的导入法很多,但无论哪种导入都要重视学生的年龄特点、认知规律及数学实际,并根据具体教学内容科学设计、灵活运用。其关键就是要创造最佳的课堂气氛和环境,充分调动内在积极因素,激发求知欲,使学生处于精神振奋状态,注意力集中,为学生能顺利接受新知识创造有利的条件。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询