高斯消元法的几何意义
展开全部
利用了方程组的初等变换的高斯消元法其几何意义可以从直线的法向量的角度思考。其实不仅仅是法向量,直线的方向向量也可以。因为 (a,b) 为法向量的直线其方向向量可以写成 (-b,a)
一、数学上,高斯消元法(或译:高斯消去法),是线性代数中的一个算法,可用来为线性方程组求解,求出矩阵的秩,以及求出可逆方阵的逆矩阵。当用于一个矩阵时,高斯消元法会产生出一个"行梯阵式"。
二、高斯消元法可以用在电脑中来解决数千条等式及未知数。不过,如果有过百万条等式时,这个算法会十分费时。一些极大的方程组通常会用迭代法来解决。亦有一些方法特地用来解决一些有特别排列的系数的方程组。
三、该方法以数学家高斯命名,由拉布扎比.伊丁特改进,发表于法国但最早出现于中国古籍《九章算术》,成书于约公元前150年。
四、高斯消元法的算法复杂度是O(n3);这就是说,如果系数矩阵的是n × n,那么高斯消元法所需要的计算量大约与n3成比例。
五、高斯消元法可用在任何域中。
六、高斯消元法对于一些矩阵来说是稳定的。对于普遍的矩阵来说,高斯消元法在应用上通常也是稳定的,不过亦有例外。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询