已知X1+x2+X2+...+Xn=1, 证明不等式:X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.....+Xn^2/(Xn+X1)>=1/2
展开全部
是否应加个条件:X1、X2、X3、...、Xn是正数。
证法一:均值不等式。
X1^2/(X1+X2)+(X1+X2)/4≥2根号[X1^2/(X1+X2)×(X1+X2)/4]=X1
X2^2/(X2+X3)+(X2+X3)/4≥2根号[X2^2/(X2+X3)×(X2+X3)/4]=X2
……
Xn^2/(Xn+X1)+(Xn+X1)/4≥2根号[Xn^2/(Xn+X1)×(Xn+X1)/4]=Xn
将上述n个不等式分别两边相加,得
X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.....+Xn^2/(Xn+X1)+(X1+X2+X3+...+Xn)/2≥X1+X2+X3+...+Xn,即
X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.....+Xn^2/(Xn+X1)≥(X1+X2+X3+...+Xn)/2=1/2,得证。
证法二:柯西不等式。
(a1^2+a2^2+......+an^2)×(b1^2+b2^2+......+bn^2)≥(a1×b1+a2×b2+......+an×bn)^2
只要取a1=X1/根号(X1+X2),a2=X2/根号(X2+X3),……,an=Xn/根号(Xn+X1),b1=根号(X1+X2),b2=根号(X2+X3),……,bn=根号(Xn+X1),再用条件X1+X2+X3+...+Xn=1即得证。
证法一:均值不等式。
X1^2/(X1+X2)+(X1+X2)/4≥2根号[X1^2/(X1+X2)×(X1+X2)/4]=X1
X2^2/(X2+X3)+(X2+X3)/4≥2根号[X2^2/(X2+X3)×(X2+X3)/4]=X2
……
Xn^2/(Xn+X1)+(Xn+X1)/4≥2根号[Xn^2/(Xn+X1)×(Xn+X1)/4]=Xn
将上述n个不等式分别两边相加,得
X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.....+Xn^2/(Xn+X1)+(X1+X2+X3+...+Xn)/2≥X1+X2+X3+...+Xn,即
X1^2/(X1+X2)+X2^2/(X2+X3)+X3^2/(X3+X4)+.....+Xn^2/(Xn+X1)≥(X1+X2+X3+...+Xn)/2=1/2,得证。
证法二:柯西不等式。
(a1^2+a2^2+......+an^2)×(b1^2+b2^2+......+bn^2)≥(a1×b1+a2×b2+......+an×bn)^2
只要取a1=X1/根号(X1+X2),a2=X2/根号(X2+X3),……,an=Xn/根号(Xn+X1),b1=根号(X1+X2),b2=根号(X2+X3),……,bn=根号(Xn+X1),再用条件X1+X2+X3+...+Xn=1即得证。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询