什么是积分中值定理?
2个回答
展开全部
积分中值定理,是一种数学定律。分为积分第一中值定理和积分第二中值定理,它们各包含两个公式。其中,积分第二中值定理还包含三个常用的推论。
积分第一中值定理:若f在[a,b]上连续,则至少存在一点c属于[a,b],使得在[a,b]上的积分值等于f(c)(b-a)。
推广:若f与g都在[a,b]上连续,且g在[a,b]上不变号,则至少存在一点c属于[a,b],使得f乘以g在[a,b]上的积分等于f(c)乘以g在[a,b]上的积分。
积分第二中值定理:设函数f在[a,b]上可积,若函数g在[a,b]上递减,且g大于等于0,则存在一点c属于[a,b],使得(f乘以g)在[a,b]上的积分等于g(a)乘以(f在[a,c]上的积分)。
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
展开全部
积分中值定理表达式为:f(x)dx=f(ξ)(b-a)(a≤ξ≤b)。若函数f(x)在闭区间上连续,则在积分区间上至少存在一个点ξ,使上式成立。中值定理的主要作用在于理论分析和证明;同时由柯西肆此中值定理还可导出一个求极限的洛必达法则。积分中值定理在定积分的计算应用中具有重要的作用,下面我们给出几个具体的常见的例子,通过实际应用来加深对积分中值定理的理解。积分中值定理的作用:积分中值定理在应用中所派敏起到的重要作用是可以使积分号去掉,或者使复杂的被积函数化为相对简单的被积函数,从而使问题简化。因此,对于证明有关尘雹枝题设中含有某个函数积分的等式或不等式,或者要证的结论中含有定积分,或者所求的极限式中含有定积分时,一般应考虑使用积分中值定理,去掉积分号,或者化简被积函数。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询