在三角形ABC中,A+B=3C,2sⅰn(A-C )=SinB求sinA
1个回答
展开全部
根据正弦定理,有:
sinA/sinB=sinC/sin(180°-A-B)=sinC/sin(2C)
而根据A+B=3C,可得sin(2C)=sin(180°-3C)=sin3C,代入上式,
sinA/sinB=sinC/sin3C
又由2sin(A-C)=sinB,得sinB=2sinAcos(A-C)-sinA
代入上式,可得
sinA / [2sinAcos(A-C)-sinA] = sinC/sin3C
移项化简,得
sinA/sinC = 2sinAcos(A-C)-sinA/sin3C
将A+B=3C代入,可得2sinAcos2C=sinA,即
2sinAcos(3A-180°)=sinA
化简,得
2cos3A+1=0
cos3A=-1/2
其中,3A是直角三角形的一个角,即A=30°
然后代回原式,可得
sinA/sinB=sinC/sin3C
化简,得
sinA/sinB=sinC/(2sinCcosA)
sinA/sinB=1/2cosA
代入已知,得
sinA/[2sinAcos(A-C)-sinA]=1/2cosA
移项,得
sinA/[2sinAcos(A-C)]=3/2cosA
化简,得
tan(A-C)=3/4
tanA/tan(3A-C)=3/4
代入A=30°,可得sin(2C-30°)=3/5
又因为A+B=3C,所以
sinA=sin(3C-B)=sin(2C-30°)=3/5
sinA/sinB=sinC/sin(180°-A-B)=sinC/sin(2C)
而根据A+B=3C,可得sin(2C)=sin(180°-3C)=sin3C,代入上式,
sinA/sinB=sinC/sin3C
又由2sin(A-C)=sinB,得sinB=2sinAcos(A-C)-sinA
代入上式,可得
sinA / [2sinAcos(A-C)-sinA] = sinC/sin3C
移项化简,得
sinA/sinC = 2sinAcos(A-C)-sinA/sin3C
将A+B=3C代入,可得2sinAcos2C=sinA,即
2sinAcos(3A-180°)=sinA
化简,得
2cos3A+1=0
cos3A=-1/2
其中,3A是直角三角形的一个角,即A=30°
然后代回原式,可得
sinA/sinB=sinC/sin3C
化简,得
sinA/sinB=sinC/(2sinCcosA)
sinA/sinB=1/2cosA
代入已知,得
sinA/[2sinAcos(A-C)-sinA]=1/2cosA
移项,得
sinA/[2sinAcos(A-C)]=3/2cosA
化简,得
tan(A-C)=3/4
tanA/tan(3A-C)=3/4
代入A=30°,可得sin(2C-30°)=3/5
又因为A+B=3C,所以
sinA=sin(3C-B)=sin(2C-30°)=3/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询