高一数学,详解
展开全部
cosX-sinX>0 根据 sinX=[2tan(X/2)]/{1+[tan(X/2)]^2} cosX={1-[tan(X/2)]^2}/{1+[tan(X/2)]^2}得 cosX-sinX ={1-[tan(X/2)]^2}/{1+[tan(X/2)]^2}-[2tan(X/2)]/{1+[tan(X/2)]^2} ={1-[tan(X/2)]^2-2tan(X/2)}/{1+[tan(X/2)]^2} 所以1-[tan(X/2)]^2-2tan(X/2)>0 又1-[tan(X/2)]^2-2tan(X/2)=-[1+tan(X/2)]^2+2>0 -1-√2<tan(X/2)<-1+√2 2kπ+arctan(-1-√2)<X/2<2kπ+arctan(-1+√2) 4kπ-2arctan(1+√2)<X<4kπ+2arctan(-1+√2)2kπ-3π/4<X<2kπ+π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
cosX-sinX>0
根据
sinX=[2tan(X/2)]/{1+[tan(X/2)]^2}
cosX={1-[tan(X/2)]^2}/{1+[tan(X/2)]^2}得
cosX-sinX
={1-[tan(X/2)]^2}/{1+[tan(X/2)]^2}-[2tan(X/2)]/{1+[tan(X/2)]^2}
={1-[tan(X/2)]^2-2tan(X/2)}/{1+[tan(X/2)]^2}
所以1-[tan(X/2)]^2-2tan(X/2)>0
又1-[tan(X/2)]^2-2tan(X/2)=-[1+tan(X/2)]^2+2>0
-1-√2<tan(X/2)<-1+√2
2kπ+arctan(-1-√2)<X/2<2kπ+arctan(-1+√2)
4kπ-2arctan(1+√2)<X<4kπ+2arctan(-1+√2)
2kπ-3π/4<X<2kπ+π/4
根据
sinX=[2tan(X/2)]/{1+[tan(X/2)]^2}
cosX={1-[tan(X/2)]^2}/{1+[tan(X/2)]^2}得
cosX-sinX
={1-[tan(X/2)]^2}/{1+[tan(X/2)]^2}-[2tan(X/2)]/{1+[tan(X/2)]^2}
={1-[tan(X/2)]^2-2tan(X/2)}/{1+[tan(X/2)]^2}
所以1-[tan(X/2)]^2-2tan(X/2)>0
又1-[tan(X/2)]^2-2tan(X/2)=-[1+tan(X/2)]^2+2>0
-1-√2<tan(X/2)<-1+√2
2kπ+arctan(-1-√2)<X/2<2kπ+arctan(-1+√2)
4kπ-2arctan(1+√2)<X<4kπ+2arctan(-1+√2)
2kπ-3π/4<X<2kπ+π/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询