SPSS非正态分布数据如何修改成为正态分布数据!急求

没有做预处理的数据,做了回归分析之后结果误差太大,不可靠!!!!求帮助啊!!!!!!!... 没有做预处理的数据,做了回归分析之后结果误差太大,不可靠!!!!求帮助啊!!!!!!! 展开
 我来答
帐号已注销
2021-06-15 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:169万
展开全部

可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布。

常用的变量变换方法有对数变换、平方根变换、倒数变换、平方根反正玄变换等,应根据资料性质选择适当的变量变换方法。

X’=lgX当原始数据中有小值及零时,亦可取X’=lg(X+1)还可根据需要选用X’=lg(X+k)或X’=lg(k-X)对数变换常用于(1)使服从对数正态分布的数据正态化。如环境中某些污染物的分布,人体中某微量元素的分布等,可用对数正态分布改善其正态性。

图形特征

集中性:正态曲线的高峰位于正中央,即均数所在的位置。

对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。

均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。

曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。

以上内容参考:百度百科-正态分布

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
1987蔡仁彬
高粉答主

推荐于2019-10-03 · 关注我不会让你失望
知道答主
回答量:169
采纳率:0%
帮助的人:5.1万
展开全部

可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布。常用的变量变换方法有对数变换、平方根变换、倒数变换、平方根反正玄变换等,应根据资料性质选择适当的变量变换方法。

1、对数变换 即将原始数据X的对数值作为新的分布数据:

X’=lgX当原始数据中有小值及零时,亦可取X’=lg(X+1)

还可根据需要选用X’=lg(X+k)或X’=lg(k-X)

对数变换常用于(1)使服从对数正态分布的数据正态化。如环境中某些污染物的分布,人体中某

微量元素的分布等,可用对数正态分布改善其正态性。

(2)使数据达到方差齐性,特别是各样本的标准差与均数成比例或变异系数CV接近于一个常数时。

2、平方根变换 即将原始数据X的平方根作为新的分布数据。

X’=sqrt(X)

平方根变换常用于:

1)使服从Poission分布的计数资料或轻度偏态资料正态化,可用平方根变换使其正态化。2)当各样本的方差与均数呈正相关时,可使资料达到方差齐性。

3)倒数变换 即将原始数据X的倒数作为新的分析数据。

X’=1/X

常用于资料两端波动较大的资料,可使极端值的影响减小。

4、平方根反正旋变换 即将原始数据X的平方根反正玄值做为新的分析数据。

X’=sin-1sqrt(X)

常用于服从二项分布的率或百分比的资料。一般认为等总体率较小如<30%时或较大(如>70%时),偏离正态较为明显,通过样本率的平方根反正玄变换,可使资料接近正态分布,达到方差齐性的要求

扩展资料:

1、在实际遇到的许多随机现象都服从或近似服从正态分布 [1]  。当样本频率分布直方图就无限接近于一条总体密度曲线,总体密度曲线较科学地反映了总体分布。但总体密度曲线的相关知识较为抽象,学生不易理解,因此在总体分布研究中我们选择正态分布作为研究的突破口。正态分布在统计学中是最基本、最重要的一种分布。

2.正态分布是可以用函数形式来表述的。其密度函数可写成:

正态分布密度函数

,(σ>0,-∞<x<+∞)

由此可见,正态分布是由它的平均数μ和标准差σ唯一决定的。常把它记为。

3.从形态上看,正态分布是一条单峰、对称呈钟形的曲线,其对称轴为x=μ,并在x=μ时取最大值。从x=μ点开始,曲线向正负两个方向递减延伸,不断逼近x轴,但永不与x轴相交,因此说曲线在正负两个方向都是以x轴为渐近线的。

参考资料来源:百度百科 :非正态分布

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
中子37
2014-05-10 · TA获得超过1.6万个赞
知道大有可为答主
回答量:1146
采纳率:88%
帮助的人:451万
展开全部
spss的变量正态转换步骤:工具栏transform-Rank cases,将左边你要进行正态化的变量拖入右边“变量”框中;点选rank types对话窗,选中normal scores选项(共四种计算方法,系统默认的是bloom计算方法,可根据你的需要进行改进),点击continue,ok,此时spss页面上会生成两列新变量,第一个变量,N打头的那个就是正态化后的新变量
望采纳
追问
求问。。。如果两种样本数据差太多肿么办?比如有病的只有5例,没病的有200例?
追答
这个没办法,如果其中一个水平样本量太少,另一个太多,那很难得到稳定和准确的结果,只能增加样本容量了
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
建孤云UJ
推荐于2017-09-21 · 知道合伙人互联网行家
建孤云UJ
知道合伙人互联网行家
采纳数:1928 获赞数:12561
入职之后主要从事网站优化、网络营销。自媒体运营一类的工作。

向TA提问 私信TA
展开全部
可以应用变量变换的方法,将不服从正态分布的资料转化为非正态分布或近似正态分布。常用的变量变换方法有对数变换、平方根变换、倒数变换、平方根反正玄变换等,应根据资料性质选择适当的变量变换方法。
1、对数变换 即将原始数据X的对数值作为新的分布数据:
X’=lgX
当原始数据中有小值及零时,亦可取X’=lg(X+1)
还可根据需要选用X’=lg(X+k)或X’=lg(k-X)
对数变换常用于(1)使服从对数正态分布的数据正态化。如环境中某些污染物的分布,人体中某些微量元素的分布等,可用对数正态分布改善其正态性。
(2)使数据达到方差齐性,特别是各样本的标准差与均数成比例或变异系数CV接近于一个常数时。
2、平方根变换 即将原始数据X的平方根作为新的分布数据。
X’=sqrt(X)
平方根变换常用于:
1)使服从Poission分布的计数资料或轻度偏态资料正态化,可用平方根变换使其正态化。2)当各样本的方差与均数呈正相关时,可使资料达到方差齐性。
3)倒数变换 即将原始数据X的倒数作为新的分析数据。
X’=1/X
常用于资料两端波动较大的资料,可使极端值的影响减小。
4、平方根反正旋变换 即将原始数据X的平方根反正玄值做为新的分析数据。
X’=sin-1sqrt(X)
常用于服从二项分布的率或百分比的资料。一般认为等总体率较小如<30%时或较大(如>70%时),偏离正态较为明显,通过样本率的平方根反正玄变换,可使资料接近正态分布,达到方差齐性的要求。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式