x=0是方程。
含有【未知数】的【等式】叫做方程。
方程是表示两个数学式(如两个数、函数、量、运算)之间相等关系的一种等式,使等式成立的未知数的值称为“解”或“根”。求方程的解的过程称为“解方程”。
通过方程求解可以免去逆向思考的不易,直接正向列出含有欲求解的量的等式即可。方程具有多种形式,如一元一次方程、二元一次方程、一元二次方程等等,还可组成方程组求解多个未知数。
扩展资料:
一、相关概念
方程式或简称方程,是含有未知数的等式。即:⒈方程中一定有含一个或一个以上未知数的代数式;2.方程式是等式,但等式不一定是方程。
1、未知数:通常设x.y.z为未知数,也可以设别的字母,全部小写字母都可以。
2、“次”:方程中次的概念和整式的“次”的概念相似。指的是含有未知数的项中,未知数次数最高的项。而次数最高的项,就是方程的次数。
3、“解”:方程的解,指使,方程的根是方程两边相等的未知数的值,指一元方程的解,两者通常可以通用。
4、解方程:求出方程的解的过程,也可以说是求方程中未知数的值的过程,或说明方程无解的过程叫解方程。
方程中,恒等式叫做恒等方程,矛盾式叫做矛盾方程。在未知数等于某特定值时,恰能使等号两边的值相等者称为条件方程,例如 ,在 时等号成立。使方程左右两边相等的未知数的值叫做方程的解。
二、方程与等式的关系
方程一定是等式,但等式不一定是方程。
例子:a+b=13 符合等式,有未知数。这个是等式,也是方程。
1+1=2 ,100×100=10000。这两个式子符合等式,但没有未知数,所以都不是方程。
在定义中,方程一定是等式,但是等式可以有其他的,比如上面举的1+1=2,100×100=10000,都是等式,显然等式的范围大一点。
参考资料来源:百度百科-方程
是方程的,方程是含有未知数的等式,此处有未知数x,而且是等式,所以是方程。方程含有未知数的等式叫做方程,方程的解,使方程左右两边相等的未知数的值叫做方程的解。解方程,求方程的解的过程叫做解方程。