高一物理 牛顿运动定律

求解... 求解 展开
vshjhj
2014-05-05 · TA获得超过685个赞
知道小有建树答主
回答量:180
采纳率:0%
帮助的人:90.1万
展开全部
牛顿三定律
  第一定律
  所有物质向支点方向做有速运动,直到平衡
  
  第二定律
  作用力与反作用力是平衡的方向相反的。 作用力小于物质力时,作用力与相等的物质力平衡,支点压力是作用力和反作用力之和压力向物质承受能力弱的方向做有速运动直到平衡。作用力的方向相同与物质力方向,作用力加速度到与物质力平衡。
  
  第三定律
  作用力大于物质力时 物质以作用力最快的速度做运动叫惯性。物质运动的方向与大于物质力的作用力相同,速度以振动方式传递消失,作用力以压力方式存在,压力释放产生作用力 作用力速度 作用力方向,向支点方向做有速运动直到平衡。
朝辞晨露夕拾辉
2014-05-05 · TA获得超过3260个赞
知道大有可为答主
回答量:2988
采纳率:0%
帮助的人:1868万
展开全部
1、牛顿第一定律:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
对牛顿第一定律的理解要点:(1)运动是物体的一种属性,物体的运动不需要力来维持;(2)它定性地揭示了运动与力的关系,即力是改变物体运动状态的原因,是使物体产生加速度的原因;(3)定律说明了任何物体都有一个极其重要的属性——惯性;(4)不受力的物体是不存在的,牛顿第一定律不能用实验直接验证,但是建立在大量实验现象的基础之上,通过思维的逻辑推理而发现的。它告诉了人们研究物理问题的另一种方法,即通过大量的实验现象,利用人的逻辑思维,从大量现象中寻找事物的规律;(5)牛顿第一定律是牛顿第二定律的基础,不能简单地认为它是牛顿第二定律不受外力时的特例,牛顿第一定律定性地给出了力与运动的关系,牛顿第二定律定量地给出力与运动的关系。
2、牛顿第二定律:物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同。公式F=ma.
对牛顿第二定律的理解要点:(1)牛顿第二定律定量揭示了力与运动的关系,即知道了力,可根据牛顿第二定律研究其效果,分析出物体的运动规律;反过来,知道了运动,可根据牛顿第二定律研究其受力情况,为设计运动,控制运动提供了理论基础;(2)牛顿第二定律揭示的是力的瞬时效果,即作用在物体上的力与它的效果是瞬时对应关系,力变加速度就变,力撤除加速度就为零,注意力的瞬时效果是加速度而不是速度;(3)牛顿第二定律是矢量关系,加速度的方向总是和合外力的方向相同的,可以用分量式表示,Fx=max,
Fy=may,Fz=maz;(4)牛顿第二定律F=ma定义了力的基本单位——牛顿(定义使质量为1kg的物体产生1m/s2的加速度的作用力为1N,即1N=1kg.m/s2.
3、牛顿第三定律:两个物体之间的作用力与反作用力总是大小相等,方向相反,作用在同一直线上。
对牛顿第三定律的理解要点:(1)作用力和反作用力相互依赖性,它们是相互依存,互以对方作为自已存在的前提;(2)作用力和反作用力的同时性,它们是同时产生、同时消失,同时变化,不是先有作用力后有反作用力;(3)作用力和反作用力是同一性质的力;(4)作用力和反作用力是不可叠加的,作用力和反作用力分别作用在两个不同的物体上,各产生其效果,不可求它们的合力,两个力的作用效果不能相互抵消,这应注意同二力平衡加以区别。
4.物体受力分析的基本程序:(1)确定研究对象;(2)采用隔离法分析其他物体对研究对象的作用力;(3)按照先重力,然后环绕物体一周找出跟研究对象接触的物体,并逐个分析这些物体对研究对象的弹力和摩擦力,最后分析其他场力;(4)画物体受力图,没有特别要求,则画示意图即可。
5.超重和失重:(1)超重:物体有向上的加速度称物体处于超重。处于失重的物体的物体对支持面的压力F(或对悬挂物的拉力)大于物体的重力,即F=mg+ma.;(2)失重:物体有向下的加速度称物体处于失重。处于失重的物体对支持面的压力FN(或对悬挂物的拉力)小于物体的重力mg,即FN=mg-ma,当a=g时,FN=0,即物体处于完全失重。
6、牛顿定律的适用范围:(1)只适用于研究惯性系中运动与力的关系,不能用于非惯性系;(2)只适用于解决宏观物体的低速运动问题,不能用来处理高速运动问题;(3)只适用于宏观物体,一般不适用微观粒子。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式