已知函数f(x)对任意实数x,y属于R,总有f(x+y)=f(x)+f(y)
已知函数f(x)对任意实数x,y∈R,总有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(-1)=2(1)求证:f(-x)=-f(x)(2)求证:f(x)...
已知函数f(x)对任意实数x,y∈R,总有f(x+y)=f(x)+f(y),且x>0时,f(x)<0,f(-1)=2
(1)求证:f(-x)=-f(x)
(2)求证:f(x)为减函数
(3)求函数f(x)在区间【-3,3】上的最大值和最小值. 展开
(1)求证:f(-x)=-f(x)
(2)求证:f(x)为减函数
(3)求函数f(x)在区间【-3,3】上的最大值和最小值. 展开
4个回答
展开全部
(1)令x=y=0,则f(0)=0;令y=-x,则f(-x)=-f(x).
(2)设x1>x2>0,则x1-x2>0,f(x1-x2)<0即f(x1)+f(-x2)<0,亦即f(x1)<f(x2).所以f(x)在区间:x>0上递减,再由奇函数的性质以及f(x)为奇函数可知,
f(x)为减函数。
(3)始终记住奇函数图形关于原点对称。由递减性,最大值和最小值分别为:
f(-3),f(3).且f(3)=f(2)+f(1)=3f(1)=-3f(-1)=-6,f(-3)=-f(3)=6
所以,最大值、最小值分别为6和-6
(2)设x1>x2>0,则x1-x2>0,f(x1-x2)<0即f(x1)+f(-x2)<0,亦即f(x1)<f(x2).所以f(x)在区间:x>0上递减,再由奇函数的性质以及f(x)为奇函数可知,
f(x)为减函数。
(3)始终记住奇函数图形关于原点对称。由递减性,最大值和最小值分别为:
f(-3),f(3).且f(3)=f(2)+f(1)=3f(1)=-3f(-1)=-6,f(-3)=-f(3)=6
所以,最大值、最小值分别为6和-6
展开全部
1)令x=y=0,则f(0)=0;令y=-x,则f(-x)=-f(x).
(2)设x1>x2>0,则x1-x2>0,f(x1-x2)<0即f(x1)+f(-x2)<0,亦即f(x1)<f(x2).所以f(x)在区间:x>0上递减,再由奇函数的性质以及f(x)为奇函数可知,
f(x)为减函数。
(3)始终记住奇函数图形关于原点对称。由递减性,最大值和最小值分别为:
f(-3),f(3).且f(3)=f(2)+f(1)=3f(1)=-3f(-1)=-6,f(-3)=-f(3)=6
所以,f(x)max、f(x)min分别为6和-6
(2)设x1>x2>0,则x1-x2>0,f(x1-x2)<0即f(x1)+f(-x2)<0,亦即f(x1)<f(x2).所以f(x)在区间:x>0上递减,再由奇函数的性质以及f(x)为奇函数可知,
f(x)为减函数。
(3)始终记住奇函数图形关于原点对称。由递减性,最大值和最小值分别为:
f(-3),f(3).且f(3)=f(2)+f(1)=3f(1)=-3f(-1)=-6,f(-3)=-f(3)=6
所以,f(x)max、f(x)min分别为6和-6
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询