已知在ΔABC中,AB=2,AC=3,∠BAC=θ,若向量BC=3向量BD,则向量AD*向量BC取值范围
已解答解:IABI=2,IACI=3,AB*AC=IABI*IACIcosθ=6COSθ,BC=AC-AB,AD*BC=(AB+BD)*BC=(AB=1/3BC)*BC=...
已解答
解:IABI=2,IACI=3,
AB*AC=IABI*IACIcosθ=6COSθ,
BC=AC-AB,AD*BC=(AB+BD)*BC=(AB=1/3BC)*BC
=AB*BC+1/3BC*BC=AB*(AC-AB)+1/3(AC-AB)(AC-AB)
=AB*AC-IABI2+1/3(IACI2-2AC*AB+IABI2)
=6COSθ-4+3-4COSθ+4/3
=2COSθ+1/3
又0〈θ〈180 -5/3〈2COSθ+1/3〈7/3
即-5/3〈AB*AC〈7/3 展开
解:IABI=2,IACI=3,
AB*AC=IABI*IACIcosθ=6COSθ,
BC=AC-AB,AD*BC=(AB+BD)*BC=(AB=1/3BC)*BC
=AB*BC+1/3BC*BC=AB*(AC-AB)+1/3(AC-AB)(AC-AB)
=AB*AC-IABI2+1/3(IACI2-2AC*AB+IABI2)
=6COSθ-4+3-4COSθ+4/3
=2COSθ+1/3
又0〈θ〈180 -5/3〈2COSθ+1/3〈7/3
即-5/3〈AB*AC〈7/3 展开
1个回答
展开全部
IABI=2,IACI=3,
向量AB*AC=|AB|*|AC|cosθ=6cosθ,
BC=AC-AB,
∴向量AD*BC=(AB+BD)*BC=(AB+BC/3)*BC
=AB*BC+BC*BC/3=AB*(AC-AB)+(1/3)(AC-AB)^2
=AB*AC-AB^2+(1/3)(AC^2-2AC*AB+AB^2)
=6cosθ-4+3-4cosθ+4/3
=2cosθ+1/3,
0°<θ<180°,-1<cosθ<1,
∴向量AD*BC的取值范围是(-5/3,7/3).
向量AB*AC=|AB|*|AC|cosθ=6cosθ,
BC=AC-AB,
∴向量AD*BC=(AB+BD)*BC=(AB+BC/3)*BC
=AB*BC+BC*BC/3=AB*(AC-AB)+(1/3)(AC-AB)^2
=AB*AC-AB^2+(1/3)(AC^2-2AC*AB+AB^2)
=6cosθ-4+3-4cosθ+4/3
=2cosθ+1/3,
0°<θ<180°,-1<cosθ<1,
∴向量AD*BC的取值范围是(-5/3,7/3).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询