曲线曲面积分题
1个回答
展开全部
设P=yz(x-x^2)
Q=zx(y-y^2)
R=xy(z-z^2)
所以根据斯托克斯公式
原积分
=∫Pdx+Qdy+Rdz
=
=∫∫∑ [x(z-z^2)-x(y-y^2)]dydz+[y(x-x^2)-y(z-z^2)]dzdx+[z(y-y^2)-z(x-x^2)]dxdy
(因为∑在x+y+z=0上,所以dydz: dzdx: dxdy=1:1:1)
=∫∫∑1 [x(z-z^2)-x(y-y^2)+y(x-x^2)-y(z-z^2)+z(y-y^2)-z(x-x^2)]dxdy
=∫∫∑1 (-xz^2+xy^2-yx^2+yz^2-zy^2+zx^2)dxdy
=∫∫∑1 (3xy^2-3x^2y+2y^3-2x^3)dxdy
=∫∫∑1 f(x,y)dxdy
(∑1为椭圆2x^2+2xy+2y^2=a^2, 他是关于原点对称的积分区域)
设f(x,y)=3xy^2-3x^2y+2y^3-2x^3
因为满足f(-x,-y)=-f(x,y)
所以∫∫f(x,y)dxdy=0
所以
原积分=0
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询