函数f(x)的定义域为D,若满足①f(x)在D内是单调函数;②存在[a,b]属于D,是f(x) 在[a,b]上的值域为[-b,-a]

答案是k的取值范围是k∈[2,4/9)过程都看了,就是不知道k为什么大于等于2。求解... 答案是k的取值范围是k∈[2,4/9) 过程都看了,就是不知道k为什么大于等于2。 求解 展开
蝽勲
2014-08-29 · 超过58用户采纳过TA的回答
知道答主
回答量:98
采纳率:0%
帮助的人:142万
展开全部
如果您认可我的回答,请点击“采纳为满意答案”,谢谢!
君子兰bq
2014-08-29 · TA获得超过6.2万个赞
知道大有可为答主
回答量:4369
采纳率:90%
帮助的人:887万
展开全部
函数f(x)=[√(2-x)]-k的定义域是:(-∞,2],且在这个定义域内递减的。
函数f(x)在[a,b]上的值域是:[-b,-a]
则:
f(a)=-a、f(b)=-b
得:
[√(2-a)]-k=-a、[√(2-b)]-k=-b
即:
[√(2-a)]+a=k、[√(2-b)]+b=k
所以,a、b是方程:[√(2-x)]+x=k的两个根。
也就是说:方程[√(2-x)]+x=k在(-∞,2]内有两个不等实根。
设:√(2-x)=t,则:t∈[0,+∞),且:x=2-t²,则:
t+(2-t²)=k
t²-t+(k-2)=0在区间[0,+∞)内有两个不等实根。
设:g(t)=t²-t+(k-2),则:
①g(0)≥0,得:k≥2(既然是0,那么把0放入式子,就只有k-2了,)
②△=1-4(k-2)>0,得:k<9/4
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式