如图,四棱锥P-ABCD中,底面ABCD为平行四边形。∠DAB=60°,AB=2AD,PD⊥底面A

BCD。(I)证明:PA⊥BD(II)设PD=AD=1,求棱锥D-PBC的高。... BCD 。 (I)证明:PA⊥BD (II)设PD=AD=1,求棱锥D-PBC的高。 展开
 我来答
tony罗腾
2014-08-31 · 知道合伙人软件行家
tony罗腾
知道合伙人软件行家
采纳数:1381 获赞数:293893
本一类院校毕业,之前参与过百度专家的活动,有网络在线答题的经验,相信我,没错的!

向TA提问 私信TA
展开全部
第一个问题:
∵PD⊥平面ABCD,∴AD⊥PD。
∵∠BAD=60°、AB=2AD,∴AD⊥BD。
由AD⊥PD、AD⊥BD、PD∩BD-D,得:AD⊥平面ABD,∴AD⊥BD。

第二个问题:
∵PD=AD=1,∴AB=2。
∵∠BAD=60°、AD⊥BD、AD=1,∴BD=√3。
∵PD⊥平面ABCD,∴PD⊥BD,∴PB=√(PD^2+BD^2)=√(1+3)=2。
∵ABCD是平行四边形,∴AD=BC、AD∥BC,而AD⊥BD,∴BC⊥BD,
∴△PBC的面积=(1/2)PB×BC=(1/2)×2×1=1。
又△BCD的面积=(1/2)BD×BC=(1/2)×√3×1=√3/2。

令棱锥D-PBC的高为h,则由D-PBC的体积=A-BCD的体积,得:
(1/3)△PBC的面积×h=(1/3)△BCD的面积×PD,
∴h=(√3/2)×1=√3/2。
即:棱锥D-PBC的高为√3/2。
追问
谢谢!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式