问一道求数学期望和方差的题
流水生产线上每个产品不合格的概率为P,0<P<1,各产品合格与否相互独立,当出现K个不合格产品时即停止检修。设开机后第一次停机时已生产了的产品个数为X,求X的数学期望EX...
流水生产线上每个产品不合格的概率为P,0<P<1,各产品合格与否相互独立,当出现K个不合格产品时即停止检修。设开机后第一次停机时已生产了的产品个数为X,求X的数学期望EX和方差DX。 我知道答案是E(X)=k/p, D(x)=k(1-p)/p^2。所以别只给答案,我只需要详细的步骤,谢谢了
哦看明白了谢谢 展开
哦看明白了谢谢 展开
1个回答
展开全部
设X=n+k,即n个“合格品”和k个“不合格品”。那么,n服从“负二项分布”,即
P(n=i) = C(i+k-1, k-1) x p^k x (1-p)^i.
这个分布的均值和方差分别是
E(n) = k(1-p)/p;
D(n) = k(1-p)/p^2.
所以, X的均值和方差分别是
E(X) = E(n)+k = k(1-p)/p + k;
D(X) = D(n) = k(1-p)/p^2.
负二项分布
当r是整数时,负二项分布又称帕斯卡分布,其概率质量函数为 它表示,已知一个事件在伯努利试验中每次的出现概率是p,在一连串伯努利试验中,一件事件刚好在第r + k次试验出现第r次的概率。
p{X=k} = f(k;r,p) = (k+r-1)!/[k!(r-1)!]p^r(1-p)^k, k=0,1,2,..., 0<p<1, r>0.
EX = sum(k=0->正无穷)kf(k;r,p) = sum(k=1->正无穷)k(k+r-1)!/[k!(r-1)!]p^r(1-p)^k = sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= r(1-p)/p*sum(k=1->正无穷)(k-1 + r+1 -1)!/[(k-1)!(r+1 -1)!]p^(r+1)(1-p)^(k-1)【把k-1看做1个整体,r+1看做1个整体,p和(1-p)的指数凑成(k-1)和(r+1)的形式】
= r(1-p)/p*sum(n=k-1=0->正无穷)(n+s-1)!/[n!(s-1)!]p^s(1-p)^n【n=k-1,s=r+1】
= r(1-p)/p*sum(n=0->正无穷)f(n;s,p)
= r(1-p)/p*1【由归一性,sum(n=0->正无穷)f(n;s,p)=1】
= r(1-p)/p
EX^2 = sum(k=0->正无穷)k^2f(k;r,p) = sum(k=1->正无穷)k^2(k+r-1)!/[k!(r-1)!]p^r(1-p)^k = sum(k=1->正无穷)k(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= sum(k=1->正无穷)(k-1+1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= sum(k=1->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
+ sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
=EX= r(1-p)/p
sum(k=1->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
=sum(k=2->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
=sum(k=2->正无穷)(k+r-1)!/[(k-2)!(r-1)!]p^r(1-p)^k
=r(r+1)(1-p)^2/p^2sum(k=2->正无穷)(k-2 + r+2 -1)!/[(k-2)!(r+2 -1)!]p^(r+2)(1-p)^(k-2)
=r(r+1)(1-p)^2/p^2sum(n=k-2=0->正无穷)(n+s-1)!/[n!(s-1)!]p^s(1-p)^n 【n=k-2,s=r+2】
=r(r+1)(1-p)^2/p^2sum(n=0->正无穷)f(n;s,p)
=r(r+1)(1-p)^2/p^2,
EX^2 = sum(k=1->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
+ sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= r(r+1)(1-p)^2/p^2 + r(1-p)/p
DX = EX^2 - (EX)^2
= r(r+1)(1-p)^2/p^2 + r(1-p)/p - [r(1-p)/p]^2
= [r(r+1)(1-p)^2 + rp(1-p) - r^2(1-p)^2]/p^2
= r(1-p)[(r+1)(1-p) + p - r(1-p)]/p^2
= r(1-p)[1-p + p]/p^2
= r(1-p)/p^2
几何分布
p{X=k} = p(1-p)^(k-1), k=1,2,...,0<p<1.
EX = sum(k=1->正无穷)kp(1-p)^(k-1),
g(x) = sum(k=1->正无穷)x^k = 1/(1-x), 0 < x < 1.
g'(x) = sum(k=1->正无穷)kx^(k-1) = [1/(1-x)]' = 1/(1-x)^2,
EX = sum(k=1->正无穷)kp(1-p)^(k-1) = psum(k=1->正无穷)k(1-p)^(k-1)
= pg'(1-p) = p/[1-(1-p)]^2 = p/p^2 = 1/p,
EX^2 = sum(k=1->正无穷)k^2p(1-p)^(k-1) = sum(k=1->正无穷)k(k-1)p(1-p)^(k-1) + sum(k=1->正无穷)kp(1-p)^(k-1)
= sum(k=1->正无穷)k(k-1)p(1-p)^(k-1) + EX
g''(x) = sum(k=1->正无穷)k(k-1)x^(k-2) = [1/(1-x)^2]' = 2/(1-x)^3
EX^2 = sum(k=1->正无穷)k(k-1)p(1-p)^(k-1) + EX
= p(1-p)sum(k=1->正无穷)k(k-1)(1-p)^(k-2) + EX
= p(1-p)g''(1-p) + 1/p
= p(1-p)*2/[1-(1-p)]^3 + 1/p
= 2(1-p)/p^2 + 1/p
DX = EX^2 - [EX]^2 = 2(1-p)/p^2 + 1/p - (1/p)^2 = 1/p^2 - 1/p
= (1-p)/p^2
P(n=i) = C(i+k-1, k-1) x p^k x (1-p)^i.
这个分布的均值和方差分别是
E(n) = k(1-p)/p;
D(n) = k(1-p)/p^2.
所以, X的均值和方差分别是
E(X) = E(n)+k = k(1-p)/p + k;
D(X) = D(n) = k(1-p)/p^2.
负二项分布
当r是整数时,负二项分布又称帕斯卡分布,其概率质量函数为 它表示,已知一个事件在伯努利试验中每次的出现概率是p,在一连串伯努利试验中,一件事件刚好在第r + k次试验出现第r次的概率。
p{X=k} = f(k;r,p) = (k+r-1)!/[k!(r-1)!]p^r(1-p)^k, k=0,1,2,..., 0<p<1, r>0.
EX = sum(k=0->正无穷)kf(k;r,p) = sum(k=1->正无穷)k(k+r-1)!/[k!(r-1)!]p^r(1-p)^k = sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= r(1-p)/p*sum(k=1->正无穷)(k-1 + r+1 -1)!/[(k-1)!(r+1 -1)!]p^(r+1)(1-p)^(k-1)【把k-1看做1个整体,r+1看做1个整体,p和(1-p)的指数凑成(k-1)和(r+1)的形式】
= r(1-p)/p*sum(n=k-1=0->正无穷)(n+s-1)!/[n!(s-1)!]p^s(1-p)^n【n=k-1,s=r+1】
= r(1-p)/p*sum(n=0->正无穷)f(n;s,p)
= r(1-p)/p*1【由归一性,sum(n=0->正无穷)f(n;s,p)=1】
= r(1-p)/p
EX^2 = sum(k=0->正无穷)k^2f(k;r,p) = sum(k=1->正无穷)k^2(k+r-1)!/[k!(r-1)!]p^r(1-p)^k = sum(k=1->正无穷)k(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= sum(k=1->正无穷)(k-1+1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= sum(k=1->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
+ sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
=EX= r(1-p)/p
sum(k=1->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
=sum(k=2->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
=sum(k=2->正无穷)(k+r-1)!/[(k-2)!(r-1)!]p^r(1-p)^k
=r(r+1)(1-p)^2/p^2sum(k=2->正无穷)(k-2 + r+2 -1)!/[(k-2)!(r+2 -1)!]p^(r+2)(1-p)^(k-2)
=r(r+1)(1-p)^2/p^2sum(n=k-2=0->正无穷)(n+s-1)!/[n!(s-1)!]p^s(1-p)^n 【n=k-2,s=r+2】
=r(r+1)(1-p)^2/p^2sum(n=0->正无穷)f(n;s,p)
=r(r+1)(1-p)^2/p^2,
EX^2 = sum(k=1->正无穷)(k-1)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
+ sum(k=1->正无穷)(k+r-1)!/[(k-1)!(r-1)!]p^r(1-p)^k
= r(r+1)(1-p)^2/p^2 + r(1-p)/p
DX = EX^2 - (EX)^2
= r(r+1)(1-p)^2/p^2 + r(1-p)/p - [r(1-p)/p]^2
= [r(r+1)(1-p)^2 + rp(1-p) - r^2(1-p)^2]/p^2
= r(1-p)[(r+1)(1-p) + p - r(1-p)]/p^2
= r(1-p)[1-p + p]/p^2
= r(1-p)/p^2
几何分布
p{X=k} = p(1-p)^(k-1), k=1,2,...,0<p<1.
EX = sum(k=1->正无穷)kp(1-p)^(k-1),
g(x) = sum(k=1->正无穷)x^k = 1/(1-x), 0 < x < 1.
g'(x) = sum(k=1->正无穷)kx^(k-1) = [1/(1-x)]' = 1/(1-x)^2,
EX = sum(k=1->正无穷)kp(1-p)^(k-1) = psum(k=1->正无穷)k(1-p)^(k-1)
= pg'(1-p) = p/[1-(1-p)]^2 = p/p^2 = 1/p,
EX^2 = sum(k=1->正无穷)k^2p(1-p)^(k-1) = sum(k=1->正无穷)k(k-1)p(1-p)^(k-1) + sum(k=1->正无穷)kp(1-p)^(k-1)
= sum(k=1->正无穷)k(k-1)p(1-p)^(k-1) + EX
g''(x) = sum(k=1->正无穷)k(k-1)x^(k-2) = [1/(1-x)^2]' = 2/(1-x)^3
EX^2 = sum(k=1->正无穷)k(k-1)p(1-p)^(k-1) + EX
= p(1-p)sum(k=1->正无穷)k(k-1)(1-p)^(k-2) + EX
= p(1-p)g''(1-p) + 1/p
= p(1-p)*2/[1-(1-p)]^3 + 1/p
= 2(1-p)/p^2 + 1/p
DX = EX^2 - [EX]^2 = 2(1-p)/p^2 + 1/p - (1/p)^2 = 1/p^2 - 1/p
= (1-p)/p^2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询