
在三角形ABC 中,a,b,c 分别为角A,B,C 的对边,且满足sin B /sin A =c
在三角形ABC中,a,b,c分别为角A,B,C的对边,且满足sinB/sinA=c/a+b-c,求证三角形为等腰三角形...
在三角形ABC 中,a,b,c 分别为角A,B,C 的对边,且满足sin B /sin A =c /a +b -c ,求证三角形为等腰三角形
展开
1个回答
展开全部
吴增广 高级教师
(1)
cos(A-B)cosB-sin(A-B)sin(A+C)=-3/5
∵A+C=180º-B
∴sin(A+C)=sinB
∴cos(A-B)cosB-sin(A-B)sinB=-3/5
∴cos(A-B+B)=-3/5
即cosA=-3/5
∵A为三角形内角
∴sinA=4/5
(2)
a=4√2,b=5
根据正弦定理
a/sinA=b/sinB
∴sinB=bsinA/a=(5*4/5)/(4√2)=√2/2
∵A为钝角 ∴C为锐角
∴cosB=√2/2
根据余弦定理
a²=b²+c²-2bccosA
∴32=25+c²+2*5c*3/5
∴c²+6c-7=0
解得c=1
向量BA在向量BC方向上的投影
为|BA|cos<BA,BC>=c*cosB=√2/2
(1)
cos(A-B)cosB-sin(A-B)sin(A+C)=-3/5
∵A+C=180º-B
∴sin(A+C)=sinB
∴cos(A-B)cosB-sin(A-B)sinB=-3/5
∴cos(A-B+B)=-3/5
即cosA=-3/5
∵A为三角形内角
∴sinA=4/5
(2)
a=4√2,b=5
根据正弦定理
a/sinA=b/sinB
∴sinB=bsinA/a=(5*4/5)/(4√2)=√2/2
∵A为钝角 ∴C为锐角
∴cosB=√2/2
根据余弦定理
a²=b²+c²-2bccosA
∴32=25+c²+2*5c*3/5
∴c²+6c-7=0
解得c=1
向量BA在向量BC方向上的投影
为|BA|cos<BA,BC>=c*cosB=√2/2
追问
回答错了吧。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询