1/1x3十1/3x5+……十1/97x99十1/99x101=?

12580全能解答
2014-10-14 · TA获得超过118个赞
知道答主
回答量:67
采纳率:0%
帮助的人:42.4万
展开全部
首先把每一个分式拆成两项之差李迅,即原式
1/1x3+1/3x5+1/5x7+……1/97x99= (1/2)x(1-1/3)+(1/2)x(1/3-1/5)+(1/2)x(1/5-1/7)+……+(1/2)x(1/97-1/99)
然后将每一项的1/2提出来,即原式=(1/2)x(1-1/3+1/3-1/5+1/5-1/7+……+1/97-1/99)
观察这个式子,可以看到从第二项即1/3开始,每一盯槐项都可以和后面的一项相消,相消后只剩下1和1/99两项,即
原式=(1/2)x(1-1/99)=49/99
通常遇到这种分母为乘积形式的分式求和,都可以将其拆为分式的差的形式,一般可以相互凯扰友抵消得到化简。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式