
关于x的一元二次方程x^2-mx+(m-2)=0的根的情况是
展开全部
x² - mx + (m - 2) = 0
△
= m² - 4(m - 2)
= m² - 4m + 8
= m² - 4m + 4 + 4
= (m - 2)² + 4
> 0
所有方程有两个不相等的实数根。
△
= m² - 4(m - 2)
= m² - 4m + 8
= m² - 4m + 4 + 4
= (m - 2)² + 4
> 0
所有方程有两个不相等的实数根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?

2025-08-07 广告
广州赛恩科学仪器有限公司(原中大科仪)始创于2032年,是全球领先的精密测量仪器供应商和微弱信号检测方案提供商。公司以锁相放大器为核心产品,陆续推出光学斩波器、源表、功率放大器、电化学工作站、电流源等一系列产品。赛恩科仪推出的锁相放大器,覆...
点击进入详情页
本回答由赛恩科仪提供
展开全部
判别式=(-m)²-4(m-2)
=m²-4m+8
=m²-4m+4+4
=(m-2)²+4≥4>0
判别式大于0
所以有两个不同的根
=m²-4m+8
=m²-4m+4+4
=(m-2)²+4≥4>0
判别式大于0
所以有两个不同的根
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由判别式等于m^2-4*(m-2)=(m-2)^2+4;可知:判别式恒大于0,于是x=(m+-(m^2-4*m+8)^(1/2))/2,有两个相异实根。(m是实数)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询