高等数学 定积分问题,求解
2个回答
展开全部
两条曲线围成的图形如下所示:
令 3cosθ=1+cosθ,解得两哗耐曲线交点的极角 θ=±π/3
两条曲线围成的图形关于极轴对称,其公共部分的面积 S 等于极轴乱没春上方公共部分面积S1+S2的二倍。
S1 = ∫ [0..π/3] 1/2 (1+cosθ)² dθ
= 1/2 ∫[0..π/3] [1+2cosθ+(1+cos2θ)/2] dθ
= 1/2 (3θ/2 + 2sinθ + 1/4 sin2θ) | [0..π/3]
= π/4 + 9/8 sinπ/3
S2 = ∫ [π/3..π/2] 1/2 (3cosθ)² dθ }
= 察旅∫ [π/3..π/2] 9/2 (1+cos2θ)/2 dθ
= (9θ/4 + 9/8 sin2θ) | [π/3..π/2]
= 9/4 (π/2-π/3) + 9/8 (sinπ-sin2π/3)
= 3π/8 - 9/8 sin(π/3)
S = 2(S1+S2) = 2 [π/4 + 9/8 sinπ/3 + 3π/8 - 9/8 sin(π/3)] = 5π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询