如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:

如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①AB2=BN?DM;②AF平分∠DFE;③AM... 如图,在正方形ABCD中,点E、F分别是BC、DC边上的两点,且∠EAF=45°,AE、AF分别交BD于M、N.下列结论:①AB2=BN?DM;②AF平分∠DFE;③AM?AE=AN?AF;④BE+DF=2MN.其中正确的结论是(  )A.①②B.①③C.①②③D.①②③④ 展开
 我来答
热切还舒适的福星8676
2015-02-09 · TA获得超过112个赞
知道答主
回答量:113
采纳率:0%
帮助的人:104万
展开全部
①∵∠BAN=∠BAM+∠MAN=∠BAM+45°,
∠AMD=∠ABM+∠BAM=45°+∠BAM,
∴∠BAN=∠AMD.
又∠ABN=∠ADM=45°,
∴△ABN∽△ADM,
∴AB:BN=DM:AD.
∵AD=AB,
∴AB2=BN?DM.
故①正确;

把△ABE绕点A逆时针旋转90°,得到△ADH.
∵∠BAD=90°,∠EAF=45°,
∴∠BAE+∠DAF=45°.
∴∠EAF=∠HAF.
∵AE=AH,AF=AF,
∴△AEF≌△AHF,
∴∠AFH=∠AFE,即AF平分∠DFE.
故②正确;
③∵AB∥CD,∴∠DFA=∠BAN.
∵∠AFE=∠AFD,∠BAN=∠AMD,
∴∠AFE=∠AMN.
又∠MAN=∠FAE,
∴△AMN∽△AFE.
∴AM:AF=AN:AE,即
AM?AE=AN?AF.
故③正确;
④由②得BE+DF=DH+DF=FH=FE.
过A作AO⊥BD,作AG⊥EF.
则△AFE与△AMN的相似比就是AG:AO.
易证△ADF≌△AGF(AAS),
则可知AG=AD=根2AO,从而得证
故④正确.
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式