
已知二次函数y=ax2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b ④a+..
已知二次函数y=ax2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0②b2-4ac<0⑤c<4b④a+b>0,则其中正确结论的个数是()A.1个B.2个C...
已知二次函数y=ax2+bx+c(a≠O)的图象如图所示,现有下列结论:①abc>0 ②b2-4ac<0 ⑤c<4b ④a+b>0,则其中正确结论的个数是( )A.1个B.2个C.3个D.4个
展开
展开全部
∵抛物线开口相下,
∴a<0,
∵抛物线对称轴为直线x=-
>0,
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,所以②错误;
∵对称轴为直线x=-
=1,
∴b=-2a,抛物线与x轴另一交点坐标为(-1,0),
∴当x=-2时,y<0,即4a-2b+c<0,
∴-2b-2b+c<0,即c<4b,所以③正确;
∵b=-2a,
∴a+b=-a>0,所以④正确.
故选B.
∴a<0,
∵抛物线对称轴为直线x=-
b |
2a |
∴b>0,
∵抛物线与y轴的交点在x轴上方,
∴c>0,
∴abc<0,所以①错误;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,所以②错误;
∵对称轴为直线x=-
b |
2a |
∴b=-2a,抛物线与x轴另一交点坐标为(-1,0),
∴当x=-2时,y<0,即4a-2b+c<0,
∴-2b-2b+c<0,即c<4b,所以③正确;
∵b=-2a,
∴a+b=-a>0,所以④正确.
故选B.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询