(2006?宁波)如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.(1)求证:△MAC是等腰三角形;(2)

(2006?宁波)如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.(1)求证:△MAC是等腰三角形;(2)若AC为⊙O直径,求证:AC2=2AM?AB.... (2006?宁波)如图,在⊙O中,弦AB与CD相交于点M,AD=BC,连接AC.(1)求证:△MAC是等腰三角形;(2)若AC为⊙O直径,求证:AC2=2AM?AB. 展开
 我来答
你猜1294
2014-09-07 · TA获得超过101个赞
知道答主
回答量:133
采纳率:0%
帮助的人:164万
展开全部
解答:证明:(1)∵弧AD=弧CB,
∴∠MCA=∠MAC.
∴△MAC是等腰三角形.

(2)连接OM,
∵AC为⊙O直径,
∴∠ABC=90°.
∵△MAC是等腰三角形,AM=CM,OA=OC,
∴MO⊥AC.
∴∠AOM=∠ABC=Rt△.
∵∠MAO=∠CAB,
∴△AOM∽△ABC.
AB
OA
=
AC
AM

∴AO?AC=AM?AB.
∴AC2=2AM?AB.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式