如图,△ABC内接于圆O,AB=6,AC=4,D是AB边上的一点,P是优弧BAC上的中点,连接PA、PB、PC、PD。
(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?请说明理由。(2)若cos∠PCB=跟号5/5,求PA的长。初三数学题。急。...
(1)当BD的长度为多少时,△PAD是以AD为底边的等腰三角形?请说明理由。
(2)若cos∠PCB=跟号5/5,求PA的长。
初三数学题。急。 展开
(2)若cos∠PCB=跟号5/5,求PA的长。
初三数学题。急。 展开
展开全部
解:(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
∵P是优弧BAC的中点
∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD全等于△PCA
∴PA=PD 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知:当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=1/2AD=1
∵∠PCD=∠PAD
∴cos∠PAD=cos∠PCB=AE/PA =根号5/5
∴PA=根号5
我们第(2)问不要做
∵P是优弧BAC的中点
∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD全等于△PCA
∴PA=PD 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知:当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=1/2AD=1
∵∠PCD=∠PAD
∴cos∠PAD=cos∠PCB=AE/PA =根号5/5
∴PA=根号5
我们第(2)问不要做
参考资料: http://wenku.baidu.com/view/aee7d01ca300a6c30c229f95.html
展开全部
解:(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
∵P是优弧BAC的中点
∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD全等于△PCA
∴PA=PD 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知:当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=1/2AD=1
∵∠PCD=∠PAD
∴cos∠PAD=cos∠PCB=AE/PA =根号5/5
∴PA=根号5
∵P是优弧BAC的中点
∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD全等于△PCA
∴PA=PD 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知:当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=1/2AD=1
∵∠PCD=∠PAD
∴cos∠PAD=cos∠PCB=AE/PA =根号5/5
∴PA=根号5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:(1)当BD=AC=4时,△PAD是以AD为底边的等腰三角形
∵P是优弧BAC的中点 ∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD≌△PCA
∴PA=PD 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=AD=1
∵∠PCB=∠PAD
∴cos∠PAD=cos∠PCB=根号5/5
∴PA= 根号5
∵P是优弧BAC的中点 ∴弧PB=弧PC
∴PB=PC
∵BD=AC=4 ∠PBD=∠PCA
∴△PBD≌△PCA
∴PA=PD 即△PAD是以AD为底边的等腰三角形
(2)由(1)可知,当BD=4时,PD=PA,AD=AB-BD=6-4=2
过点P作PE⊥AD于E,则AE=AD=1
∵∠PCB=∠PAD
∴cos∠PAD=cos∠PCB=根号5/5
∴PA= 根号5
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2010-11-07
展开全部
我也正在做这道题,是数学分类精粹上的题目,你可以去其他地方找找,实在不行就别做了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询