设函数f(x)是定义在R上的非常值函数,且对任意的x,y∈R有f(x+y)=f(x)f(y).(1)证明:f(0)=1

设函数f(x)是定义在R上的非常值函数,且对任意的x,y∈R有f(x+y)=f(x)f(y).(1)证明:f(0)=1;(2)设A={(x,y)|f(x2)f(y2)<f... 设函数f(x)是定义在R上的非常值函数,且对任意的x,y∈R有f(x+y)=f(x)f(y).(1)证明:f(0)=1;(2)设A={(x,y)|f(x2)f(y2)<f(1)},B={(x,y)|f(x+y+m)=1},若f(x)在R上是单调增函数,且A∩B=?,求实数m的取值范围. 展开
 我来答
西夏驸马烄
2014-12-31 · 超过61用户采纳过TA的回答
知道答主
回答量:117
采纳率:100%
帮助的人:109万
展开全部
(1)证明:
根据题意,在f(x+y)=f(x)f(y)中,令y=0得f(x)=f(x)?f(0),
又由f(x)不是常数,故f(0)=1;
(2)对于集合A={(x,y)|f(x2)f(y2)<f(1)},
由f(x+y)=f(x)f(y)可得f(x2+y2)<f(1),
又由f(x)在R上是单调增函数,则x2+y2<1,
可以看出集合A表示原点为圆心,1为半径的圆内部分(不包括边界),
对于集合B,由f(0)=1,
则f(x+y+m)=1?f(x+y+m)=f(0)?x+y+m=0,
集合B表示直线x+y+m=0,
若A∩B=?,即直线与圆没有交点,
A∩B=??
|0+0+m|
2
≥1

解可得m≤-
2
或m≥
2

故m的取值范围是(-∞,-
2
]∪[
2
,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式