设函数f(x)是定义在R上的非常值函数,且对任意的x,y∈R有f(x+y)=f(x)f(y).(1)证明:f(0)=1
设函数f(x)是定义在R上的非常值函数,且对任意的x,y∈R有f(x+y)=f(x)f(y).(1)证明:f(0)=1;(2)设A={(x,y)|f(x2)f(y2)<f...
设函数f(x)是定义在R上的非常值函数,且对任意的x,y∈R有f(x+y)=f(x)f(y).(1)证明:f(0)=1;(2)设A={(x,y)|f(x2)f(y2)<f(1)},B={(x,y)|f(x+y+m)=1},若f(x)在R上是单调增函数,且A∩B=?,求实数m的取值范围.
展开
1个回答
展开全部
(1)证明:
根据题意,在f(x+y)=f(x)f(y)中,令y=0得f(x)=f(x)?f(0),
又由f(x)不是常数,故f(0)=1;
(2)对于集合A={(x,y)|f(x2)f(y2)<f(1)},
由f(x+y)=f(x)f(y)可得f(x2+y2)<f(1),
又由f(x)在R上是单调增函数,则x2+y2<1,
可以看出集合A表示原点为圆心,1为半径的圆内部分(不包括边界),
对于集合B,由f(0)=1,
则f(x+y+m)=1?f(x+y+m)=f(0)?x+y+m=0,
集合B表示直线x+y+m=0,
若A∩B=?,即直线与圆没有交点,
即A∩B=??
≥1.
解可得m≤-
或m≥
,
故m的取值范围是(-∞,-
]∪[
,+∞).
根据题意,在f(x+y)=f(x)f(y)中,令y=0得f(x)=f(x)?f(0),
又由f(x)不是常数,故f(0)=1;
(2)对于集合A={(x,y)|f(x2)f(y2)<f(1)},
由f(x+y)=f(x)f(y)可得f(x2+y2)<f(1),
又由f(x)在R上是单调增函数,则x2+y2<1,
可以看出集合A表示原点为圆心,1为半径的圆内部分(不包括边界),
对于集合B,由f(0)=1,
则f(x+y+m)=1?f(x+y+m)=f(0)?x+y+m=0,
集合B表示直线x+y+m=0,
若A∩B=?,即直线与圆没有交点,
即A∩B=??
|0+0+m| | ||
|
解可得m≤-
2 |
2 |
故m的取值范围是(-∞,-
2 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询