(2013?静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,
(2013?静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.求证:(1)AF=CE;...
(2013?静安区二模)已知:如图,在△ABC中,AB=AC,点D、E分别在边AC、AB上,DA=DB,BD与CE相交于点F,∠AFD=∠BEC.求证:(1)AF=CE;(2)BF2=EF?AF.
展开
展开全部
(1)证明:∵DA=DB,
∴∠FBA=∠EAC,
∵∠AFD=∠BEC,
∴180°-∠AFD=180°-∠BEC,
即∠BFA=∠AEC.
∵在△BFA和△AEC中
,
∴△BFA≌△AEC(AAS).
∴AF=CE.
(2)解:∵△BFA≌△AEC,
∴BF=AE.
∵∠EAF=∠ECA,∠FEA=∠AEC,
∴△EFA∽△EAC.
∴
=
.
∴EA2=EF?CE.
∵EA=BF,CE=AF,
∴BF2=EF?AF.
∴∠FBA=∠EAC,
∵∠AFD=∠BEC,
∴180°-∠AFD=180°-∠BEC,
即∠BFA=∠AEC.
∵在△BFA和△AEC中
|
∴△BFA≌△AEC(AAS).
∴AF=CE.
(2)解:∵△BFA≌△AEC,
∴BF=AE.
∵∠EAF=∠ECA,∠FEA=∠AEC,
∴△EFA∽△EAC.
∴
EA |
EC |
EF |
EA |
∴EA2=EF?CE.
∵EA=BF,CE=AF,
∴BF2=EF?AF.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询