如图(1),在平面直角坐标系中,O为坐标原点,抛物线y=ax2+8ax+16a+6经过点B(0,4).(1)求抛物线的

如图(1),在平面直角坐标系中,O为坐标原点,抛物线y=ax2+8ax+16a+6经过点B(0,4).(1)求抛物线的解析式;(2)设抛物线的顶点为D,过点D、B作直线交... 如图(1),在平面直角坐标系中,O为坐标原点,抛物线y=ax2+8ax+16a+6经过点B(0,4).(1)求抛物线的解析式;(2)设抛物线的顶点为D,过点D、B作直线交x轴于点A,点C在抛物线的对称轴上,且C点的纵坐标为-4,连接BC、AC.求证:△ABC是等腰直角三角形;(3)在(2)的条件下,将直线DB沿y轴向下平移,平移后的直线记为l,直线l 与x轴、y轴分别交于点A′、B′,是否存在直线l,使△A′B′C是直角三角形,若存在求出l的解析式,若不存在,请说明理由. 展开
 我来答
千离IR22IM
2014-09-12 · 超过69用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:137万
展开全部
(1)解:由题意知:16a+6=4
解得:a=?
1
8

故抛物线的解析式为:y=?
1
8
x2?x+4


(2)证明:如图1,由抛物线的解析式知:顶点D坐标为(-4,6)
∵点C的纵坐标为-4,且在抛物线的对称轴上,
∴C点坐标为(-4,-4)
设直线BD解析式为:y=kx+4(k≠0)
有:6=-4k+4,
解得k=?
1
2

∴BD解析式为y=?
1
2
x+4

∴直线BD与x轴的交点A的坐标为(8,0)
过点C作CE⊥y轴于点E,则CE=4,BE=8
又∵OB=4,OA=8,
在△CEB和△BOA中,
EC=OB
∠CEB=∠BOA=90°
BE=AO

∴△CEB≌△BOA(SAS),
∴CB=AB,∠1=∠2
∵∠2+∠3=90°,
∴∠2+∠3=90°
∴∠1+∠3=90°,即∠ABC=90°
∴△ABC是等腰直角三角形,

(3)存在.
①当∠CA′B′=90°时,如图2所示,
∵A′B′∥AB,
∴∠OA′B′=∠BAO,
又∵∠EA′C+∠ECA′=90°,
∠OA′B′+∠EA′C=90°,
∴∠BAO=∠OA′B′,
∴∠ECA′=∠BAO,
∵tan∠BAO=
1
2

∴tan∠ECA′=
1
2

∴EA′=2,A′O=2,
∴A′坐标为(-2,0),
B′坐标为(0,-1),
∴直线l解析式为y=?
1
2
x?1

②当∠A′CB′=90°时,如图3所示,
过点C作CE⊥y轴于点E,
利用△ABC是等腰直角三角形,
∵∠A′CF+∠FCB′=90°,
∠B′CE+∠FCB′=90°,
∴∠B′CE=∠A′CF,
在△A′FC和△B′EC中,
∠B′EC=∠A′FC
∠ECB′=∠FCA′
A′C=B′C

∴△A′FC≌△B′EC(AAS),
则A′F=B′E
由①tan∠B′A′O=
1
2

设B′坐标为(0,n)
则有
?n
4+4+n
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消