解答:
解:已知敏春简:如图,在Rt△ABC和Rt△A'B'C'中,∠ACB=∠A'C'B'=90°,
CD⊥AB于D,C'D'⊥A'B'于D',BC=B'C',CD=C'D',
求证:Rt△ABC≌Rt△A'B'C'.
证明:∵CD⊥AB于D,C'D'⊥A'B'于D',
∴∠CDB=∠C′D′B′=90°
在Rt△CDB与Rt△C′D′B′中,
∵
,
∴Rt△CDB≌Rt△C′D′B′(HL),
∴∠B=∠B′.
在Rt△ABC和Rt△A'B'C'中,森态
∵
| ∠ACB=∠A′桥裤C′B′=90° | BC=B′C′ | ∠B=∠B′ |
| |
,
∴Rt△ABC≌Rt△A'B'C'.