(2011?绵阳)已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.(1)求m

(2011?绵阳)已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.(1)求m的值;(2)过A作x轴的平行线,交抛物线于点C,求... (2011?绵阳)已知抛物线y=x2-2x+m-1与x轴只有一个交点,且与y轴交于A点,如图,设它的顶点为B.(1)求m的值;(2)过A作x轴的平行线,交抛物线于点C,求证:△ABC是等腰直角三角形;(3)将此抛物线向下平移4个单位后,得到抛物线C′,且与x轴的左半轴交于E点,与y轴交于F点,如图.请在抛物线C′上求点P,使得△EFP是以EF为直角边的直角三角形. 展开
 我来答
野蔷薇歌神204
推荐于2016-05-07 · 超过58用户采纳过TA的回答
知道答主
回答量:105
采纳率:0%
帮助的人:141万
展开全部
解答:解:(1)∵抛物线y=x2-2x+m-1与x轴只有一个交点,
∴△=(-2)2-4×1×(m-1)=0,
解得,m=2;

(2)由(1)知抛物线的解析式为y=x2-2x+1=(x-1)2,易得顶点B(1,0),
当x=0时,y=1,得A(0,1).
由1=x2-2x+1,解得,x=0(舍)或x=2,所以C点坐标为:(2,1).
过C作x轴的垂线,垂足为D,则CD=1,BD=xD-xB=1.
∴在Rt△CDB中,∠CBD=45°,BC=
2

同理,在Rt△AOB中,AO=OB=1,于是∠ABO=45°,AB=
2

∴∠ABC=180°-∠CBD-∠ABO=90°,AB=BC,
因此△ABC是等腰直角三角形;

(3)由题知,抛物线C′的解析式为y=x2-2x-3,
当x=0时,y=-3;
当y=0时,x=-1或x=3,
∴E(-1,0),F(0,-3),即OE=1,OF=3.
第一种情况:若以E点为直角顶点,设此时满足条件的点为P1(x1,y1),作P1M⊥x轴于M.
∵∠P1EM+∠OEF=∠EFO+∠OEF=90°,
∴∠P1EM=∠EFO,得Rt△EFO∽Rt△P1EM,
P1M
EM
OE
OF
1
3
,即EM=3P1M.
∵EM=x1+1,P1M=y1
∴x1+1=3y1
由于P1(x1,y1)在抛物线C′上,
则有3(x12-2x1-3)=x1+1,
整理得,3x12-7x1-10=0,解得,
x1
10
3
,或x2=-1(舍去)
x1
10
3
代入①中可解得,
y1=
13
9

∴P1
10
3
13
9
).
第二种情况:若以F点为直角顶点,设此时满足条件的点为P2(x2,y2),作P2N⊥y轴于N.
同第一种情况,易知Rt△EFO∽Rt△FP2N,
FN
P2N
OE
OF
1
3
,即P2N=3FN.
∵P2N=x2,FN=3+y2
∴x2=3(3+y2)②
由于P2(x2,y2)在抛物线C′上,
则有x2=3(3+x22-2x2-3),
整理得3x22-7x2=0,解得x2=0(舍)或x2
7
3

x2
7
3
代入②中可解得,
y2=?
20
9

∴P2
7
3
?
20
9
).
综上所述,满足条件的P点的坐标为:(
10
3
13
9
)或(
7
3
?
20
9
).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式