(2014?梅列区质检)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,

(2014?梅列区质检)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BO... (2014?梅列区质检)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D.下列四个结论:①∠BOC=90°+12∠A;②以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切;③EF是△ABC的中位线;④设OD=m,AE+AF=n,则S△AEF=12mn.其中正确的结论是(  )A.①②③B.①③④C.②③④D.①②④ 展开
 我来答
手机用户41179
推荐于2016-03-20 · TA获得超过180个赞
知道答主
回答量:210
采纳率:100%
帮助的人:75.5万
展开全部
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠OBC=
1
2
∠ABC,∠OCB=
1
2
∠ACB,∠A+∠ABC+∠ACB=180°,
∴∠OBC+∠OCB=90°-
1
2
∠A,
∴∠BOC=180°-(∠OBC+∠OCB)=90°+
1
2
∠A;故①正确;
过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴ON=OD=OM=m,
∴S△AEF=S△AOE+S△AOF=
1
2
AE?OM+
1
2
AF?OD=
1
2
OD?(AE+AF)=
1
2
mn;故④正确;
∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,
∴∠EBO=∠OBC,∠FCO=∠OCB,
∵EF∥BC,
∴∠EOB=∠OBC,∠FOC=∠OCB,
∴∠EBO=∠EOB,∠FOC=∠FCO,
∴EB=EO,FO=FC,
∴EF=EO+FO=BE+CF,
∴以E为圆心、BE为半径的圆与以F为圆心、CF为半径的圆外切,故②正确,
根据已知不能推出E、F分别是AB、AC的中点,故③正确,
∴其中正确的结论是①②④
故选D.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式