已知函数f(x)=|x-a|,g(x)=ax,(a∈R).(1)判断函数f(x)的对称性和奇偶性;(2)当a=2时,求使

已知函数f(x)=|x-a|,g(x)=ax,(a∈R).(1)判断函数f(x)的对称性和奇偶性;(2)当a=2时,求使g2(x)f(x)=4x成立的x的集合;(3)若a... 已知函数f(x)=|x-a|,g(x)=ax,(a∈R).(1)判断函数f(x)的对称性和奇偶性;(2)当a=2时,求使g2(x)f(x)=4x成立的x的集合;(3)若a>0,记F(x)=g(x)-f(x),试问F(x)在(0,+∞)是否存在最大值,若存在,求a的取值范围,若不存在,说明理由. 展开
 我来答
级在视9292
推荐于2016-12-01 · 超过60用户采纳过TA的回答
知道答主
回答量:136
采纳率:66%
帮助的人:57.1万
展开全部
(1)由函数f(x)=
x?a   (x≥a)
?x+a (x<a)
可知,函数f(x)的图象关于直线x=a对称.
当a=0时,函数f(x)=|x|,显然是一个偶函数;
当a≠0时,取特殊值:f(a)=0,f(-a)=2|a|≠0.
即f(-x)
f(x)
?f(x)

故函数f(x)=|x-a|是非奇非偶函数.
(2)若a=2,且g2(x)f(x)=4x
可得:x2|x-2|=x,得 x=0 或 x|x-2|=1;
因此得 x=0 或 x=1 或 x=1+
2

故所求的集合为{0,1,1+
2
}.
(3)对于 a>0,F(x)=g(x)-f(x)=ax-|x-a|=
(a+1)x?a (0<x<a)
(a?1)x+a  (x≥a)

若a>1时,函数F(x)在区间(0,a),[a,+∞)上递增,无最大值;
若a=1时
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式