(一)已知a,b,c∈R+,①求证:a2+b2+c2≥ab+bc+ac;②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.(

(一)已知a,b,c∈R+,①求证:a2+b2+c2≥ab+bc+ac;②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.(二)已知a,b,x,y∈R+,①求证... (一)已知a,b,c∈R+,①求证:a2+b2+c2≥ab+bc+ac;②若a+b+c=1,利用①的结论求ab+bc+ac的最大值.(二)已知a,b,x,y∈R+,①求证:x2a+y2b≥(x+y)2a+b.②利用①的结论求12x+91?2x(0<x<12)的最小值. 展开
 我来答
绿茶WU5
2014-09-26 · 超过55用户采纳过TA的回答
知道答主
回答量:95
采纳率:100%
帮助的人:111万
展开全部
证明:(一)①a2+b2≥2ab,c2+b2≥2bc,a2+c2≥2ac,…(3分)
三式相加可得a2+b2+c2≥ab+bc+ac
当且仅当a=b=c时等号成立                  …(6分)
②1=(a+b+c)2=a2+b2+c2+2(ab+bc+ac)≥3(ab+bc+ac)…(9分)
ab+bc+ac≤
1
3
,当且仅当a=b=c时等号成立.    …(12分)
(二)①要证
x2
a
+
y2
b
(x+y)2
a+b
,只要证(
x2
a
+
y2
b
)(a+b)≥(x+y)2
,…(3分)
(
x2
a
+
y2
b
)(a+b)=x2+y2+
bx2
a
+
ay2
b
x2+y2+2xy=(x+y)2

当且仅当bx=ay时等号成立.故原不等式得证.     …(6分)
②由①的结论知:
1
2x
+
9
1?2x
(1+3)2
2x+1?2x
=16

当且仅当x=
1
8
时,等号成立.                …(12分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式