高数问题,极限问题和连续问题

1.若f(x0+)=(x0-)则A有极限但不一定连续B有极限但不连续2.lim(x趋向1)(x^2-kx+1)/(x-1)=1则k=?... 1.若f(x0+)=(x0-)则
A有极限但不一定连续 B有极限但不连续
2.lim(x趋向1)(x^2-kx+1)/(x-1)=1则 k=?
展开
 我来答
PasirRis白沙
高粉答主

2015-01-22 · 说的都是干货,快来关注
知道大有可为答主
回答量:7357
采纳率:100%
帮助的人:2998万
展开全部
新年好!Happy Chinese New Year !

第一题解答:
1、左、右极限各自存在,并且相等,所以极限存在;
2、极限存在,只是趋势存在。

我们学极限时,几乎所有的教师,都完全侧重用limitation,
而忽视了应该齐头并进的tendency。所以,很多学生学得
困难重重,应有的本能直觉丧失,其实都是教师作的罪孽。
既然极限只表示趋势,自然不表示是否连续,这是自然而
然、水到渠成的概念。所以,本题答案是A。

第二题解答:
1、分母的极限是0,而整体的极限是1,所以分子上必然含有
因子 ( x - 1 )。分子上进行因式分解,得到 (x - 1)(x + a),
比较常数得到 a = -1,然后,得到 k = 2。
2、这样一来,整体的极限是0,而不是1。
这说明,本题出错题了。更说明,很多教师出题时,很草率。
也就是说,类似于本题的问题,不是出题人想等于什么,就
等于什么。极限问题还不是我们的最重的重灾区,我们的教
师在出虚数问题时,白痴教师占99%以上。除了问取值范围,
除了问实部虚部、除了简单化简之外,个个就全是脑积水了。
一江春水555
2015-01-08 · 超过12用户采纳过TA的回答
知道答主
回答量:80
采纳率:0%
帮助的人:11.9万
展开全部
  1. A  

  2. 2

更多追问追答
追问
为什么是2呢?
追答
因为x趋于1有极限 所以 (x-1)(x+m)= x2-kx+1  等式两边系数相等 有m=-1 k=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式