已知函数f(x)=(ax-2)ex在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;
已知函数f(x)=(ax-2)ex在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(...
已知函数f(x)=(ax-2)ex在x=1处取得极值.(Ⅰ)求a的值;(Ⅱ)求函数f(x)在[m,m+1]上的最小值;(Ⅲ)求证:对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤e.
展开
展开全部
(Ⅰ)f'(x)=aex+(ax-2)ex=(ax+a-2)ex,
由已知得f'(1)=0,即(2a-2)e=0,
解得:a=1,
验证知,当a=1时,在x=1处函数f(x)=(x-2)ex取得极小值,所以a=1;
(Ⅱ)f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex.
所以函数f(x)在(-∞,1)上递减,在(1,+∞)上递增.
当m≥1时,f(x)在[m,m+1]上单调递增,fmin(x)=f(m)=(m-2)em.
当0<m<1时,m<1<m+1,f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,fmin(x)=f(1)=-e.
当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,fmin(x)=f(m+1)=(m?1)em+1.
综上,f(x)在[m,m+1]上的最小值fmin(x)=
(Ⅲ)由(Ⅰ)知f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex.
令f'(x)=0得x=1,
因为f(0)=-2,f(1)=-e,f(2)=0,
所以fmax(x)=0,fmin(x)=-e,
所以,对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤fmax(x)-fmin(x)=e,
由已知得f'(1)=0,即(2a-2)e=0,
解得:a=1,
验证知,当a=1时,在x=1处函数f(x)=(x-2)ex取得极小值,所以a=1;
(Ⅱ)f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex.
x | (-∞,1) | 1 | (1,+∞) |
f'(x) | - | 0 | + |
f(x) | 减 | 增 |
当m≥1时,f(x)在[m,m+1]上单调递增,fmin(x)=f(m)=(m-2)em.
当0<m<1时,m<1<m+1,f(x)在[m,1]上单调递减,在[1,m+1]上单调递增,fmin(x)=f(1)=-e.
当m≤0时,m+1≤1,f(x)在[m,m+1]单调递减,fmin(x)=f(m+1)=(m?1)em+1.
综上,f(x)在[m,m+1]上的最小值fmin(x)=
|
(Ⅲ)由(Ⅰ)知f(x)=(x-2)ex,f'(x)=ex+(x-2)ex=(x-1)ex.
令f'(x)=0得x=1,
因为f(0)=-2,f(1)=-e,f(2)=0,
所以fmax(x)=0,fmin(x)=-e,
所以,对任意x1,x2∈[0,2],都有|f(x1)-f(x2)|≤fmax(x)-fmin(x)=e,
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询