如图所示,让一小物体(可看作质点)从图示斜面上的A点以v0=4m/s的初速度滑上斜面,物体滑到斜面上的B点
如图所示,让一小物体(可看作质点)从图示斜面上的A点以v0=4m/s的初速度滑上斜面,物体滑到斜面上的B点后沿原路返回.若A到B的距离为1m,斜面倾角为θ=37°.求:(...
如图所示,让一小物体(可看作质点)从图示斜面上的A点以v0=4m/s的初速度滑上斜面,物体滑到斜面上的B点后沿原路返回.若A到B的距离为1m,斜面倾角为θ=37°.求:(1)物体沿斜面向上滑动时的加速度为多大?(2)求物体与斜面间的动摩擦因数;(3)若设水平地面为零重力势能面,且物体返回经过C点时,其动能恰与重力势能相等,求C点相对水平地面的高度h.(sin37°=0.6,cos37°=0.8)
展开
1个回答
展开全部
(1)由运动学公式,可得0-v02=-2a?xAB
代入数据解得a=8m/s2
(2)由牛顿第二定律有mgsinθ+μmgcosθ=ma
代入数据解得μ=0.25
(3)设物体返回经过C点时速度大小为v1,则对于物体由B到C,
由动能定理有mg(ABsinθ-h)-μmgcosθ.
=
mv2,
又
mv2=mgh
联立以上两式解得h=
xAB
代入数据可得:h=0.24m
即动能与势能相等时C点相对地面的高度为0.24m.
答:(1)物体沿斜面向上滑动时的加速度为8m/s2;
(2)物体与斜面间的动摩擦因数为0.25;
(3)C点相对水平地面的高度h为0.24m.
代入数据解得a=8m/s2
(2)由牛顿第二定律有mgsinθ+μmgcosθ=ma
代入数据解得μ=0.25
(3)设物体返回经过C点时速度大小为v1,则对于物体由B到C,
由动能定理有mg(ABsinθ-h)-μmgcosθ.
xABsinθ?h |
sinθ |
1 |
2 |
又
1 |
2 |
联立以上两式解得h=
sinθ?μcosθ |
2?μcosθ |
代入数据可得:h=0.24m
即动能与势能相等时C点相对地面的高度为0.24m.
答:(1)物体沿斜面向上滑动时的加速度为8m/s2;
(2)物体与斜面间的动摩擦因数为0.25;
(3)C点相对水平地面的高度h为0.24m.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询