已知数列{an}满足a1=1,an+1=2an+1(n∈N*)(1)求数列{an}的通项公式;(2)若数列{bn}满足4b1?14b2?1
已知数列{an}满足a1=1,an+1=2an+1(n∈N*)(1)求数列{an}的通项公式;(2)若数列{bn}满足4b1?14b2?1…4bn?1=(an+1)bn(...
已知数列{an}满足a1=1,an+1=2an+1(n∈N*)(1)求数列{an}的通项公式;(2)若数列{bn}满足4b1?14b2?1…4bn?1=(an+1) bn(n∈N*),证明{bn}是等差数列.
展开
1个回答
展开全部
(1)∵∵an+1=2an+1,
∴an+1+1=2(an+1),
∵a1=1,∴a1+1=2≠0,
∴数列{an+1}是以2为首项,2为公比的等比数列,
∴an+1=2?2n-1=2n,
即an=2n-1,求数列{an}的通项公式an=2n-1;
(2)若数列{bn}满足4b1?14b2?1…4bn?1=(an+1) bn(n∈N*),
则4b1?14b2?1…4bn?1=(2n) bn,
即2[b1+b2+…+bn-n]=nbn,①
2[b1+b2+…+bn+1-(n+1)]=(n+1)bn+1,②,
②-①得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,③
nbn+2-(n+1)bn+1+2=0,④
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
则bn+2+bn=2bn+1,
∴{bn}是等差数列.
∴an+1+1=2(an+1),
∵a1=1,∴a1+1=2≠0,
∴数列{an+1}是以2为首项,2为公比的等比数列,
∴an+1=2?2n-1=2n,
即an=2n-1,求数列{an}的通项公式an=2n-1;
(2)若数列{bn}满足4b1?14b2?1…4bn?1=(an+1) bn(n∈N*),
则4b1?14b2?1…4bn?1=(2n) bn,
即2[b1+b2+…+bn-n]=nbn,①
2[b1+b2+…+bn+1-(n+1)]=(n+1)bn+1,②,
②-①得2(bn+1-1)=(n+1)bn+1-nbn,
即(n-1)bn+1-nbn+2=0,③
nbn+2-(n+1)bn+1+2=0,④
③-④,得nbn+2-2nbn+1+nbn=0,
即bn+2-2bn+1+bn=0,
则bn+2+bn=2bn+1,
∴{bn}是等差数列.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询