最大值最小值的问题怎么求?

nice你111
2014-10-21 · TA获得超过2万个赞
知道大有可为答主
回答量:5690
采纳率:3%
帮助的人:4484万
展开全部
一. 求函数最值常用的方法
最值问题是生产,科学研究和日常生活中常遇到的一类特殊的数学问题,是高中数学的一个重点, 它涉及到高中数学知识的各个方面, 解决这类问题往往需要综合运用各种技能, 灵活选择合理的解题途径, 而教材中没有作出系统的叙述.因此, 在数学总复习中,通过对例题, 习题的分析, 归纳出求最值问题所必须掌握的基本知识和基本处理方程.
常见的求最值方法有:
1.配方法: 形如的函数,根据二次函数的极值点或边界点的取值确定函数的最值.
2.判别式法: 形如的分式函数, 将其化成系数含有y的关于x的二次方程.由于, ∴≥0, 求出y的最值, 此种方法易产生增根, 因而要对取得最值时对应的x值是否有解检验.
3.利用函数的单调性 首先明确函数的定义域和单调性, 再求最值.
4.利用均值不等式, 形如的函数, 及≥≤, 注意正,定,等的应用条件, 即: a, b均为正数, 是定值, a=b的等号是否成立.
5.换元法: 形如的函数, 令,反解出x, 代入上式, 得出关于t的函数, 注意t的定义域范围, 再求关于t的函数的最值.
还有三角换元法, 参数换元法.
6.数形结合法 形如将式子左边看成一个函数, 右边看成一个函数, 在同一坐标系作出它们的图象, 观察其位置关系, 利用解析几何知识求最值.
求利用直线的斜率公式求形如的最值.
7.利用导数求函数最值
追问
什么是函数
匿名用户
2014-10-21
展开全部
根据你的年级来说 如果是高中 一般性是根据单调和定义区间来求的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式