n个人围成一圈,序号分别为1-n,从1号玩家从1开始报数. 如果有玩家报的数是3的倍数或者 10
如何用c语言解决,尽量简短 展开
此题可用数学方法求解。
设有n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数 (用数学方法解的时候需要注意应当从0开始编号,因为取余会取到0解。)
实质是一个递推,n个人中最终留下来的序号与n-1个人中留下来的人的序号有一个递推关系式。
假设除去第k个人,则
0, 1, 2, 3, ..., k-2, k-1, k, ..., n-1 // 原始序列 (1)
0, 1, 2, 3, ..., k-2, , k, ..., n-1 // 除去第k人,即除去序号为k-1的人 (2)
k, k+1, ..., n-1, 0, 1, ..., k-2 // 以序号k为起始,从k开始报0 (3)
0, 1, ..., n-k-1, n-k, n-k+1, ..., n-2 // 作编号转换,此时队列为n-1人 (4)
变
换后就完完全全成为了(n-1)个人报数的子问题,注意(1)式和(4)式,是同一个问题,不同的仅仅是人数。比较(4)和(3),不难看
出,0+k=k, 1+k=k+1, ... ,(3)式中'0'后面的数字,((n-3)+k)%n=k-3,((n-2)+k)%n=k-2,
对于(3)式中'0'前面的数字,由于比n小,也可看作(0+k)%n=k, (1+k)%n=k+1, 故可得出规律:
设(3)中某一数为x' , (4)中对应的数为x,则有:x'=(x+k)%n.
设x为最终留下的人序号时,队列只剩下1人时,显然x=0; 此时可向前回溯至2人时x对应的序号,3人时x对应的序号……直至n人时x的序号,即为所求。
#include <stdio.h>
const int M = 3;
int main()
{
int n, s = 0;
scanf("%d", &n);
for (int i = 2; i <= n; ++i)
s = (s+M)%i;
printf("%d\n", s+1);
return 0;
}
此题可用数学方法求解。
设有n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数 (用数学方法解的时候需要注意应当从0开始编号,因为取余会取到0解。)
实质是一个递推,n个人中最终留下来的序号与n-1个人中留下来的人的序号有一个递推关系式。
找规律的方法:
1、标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。找出的规律,通常包序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
2、斐波那契数列法:每个数都是前两个数的和。
3、等差数列法:每两个数之间的差都相等。
4、跳格子法:可以间隔着看,看隔着的数之间有什么关系,如14,1,12,3,10,5,第奇数项成等差数列,第偶数项也成等差数列,于是接下来应该填8。
#include <stdio.h>
//返回数组中剩下的最后一个元素的下标(从0开始)
int fn(int *p,int n)
{
if(n==1)
return 0;
int i=0,j=0,k=n,l;
while(1)
{
if(p[i] != 0)
{
if(++j % 3 != 0)
l = i;
else
{
p[i] = 0;
if(--k == 1)
break;
}
}
if(++i >= n)
i = 0;
}
return l;
}
void main()
{
int x[10];
for(int i=0;i<10;++i)
x[i] = i+1;
printf("%d",fn(x,10)+1); //因为返回的是数组下标,从0开始,这里加1再打印出来。
}