(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM
(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜...
(1)如图1,点C是线段AB上一点,分别以AC,BC为边在AB的同侧作等边△ACM和△CBN,连接AN,BM.分别取BM,AN的中点E,F,连接CE,CF,EF.观察并猜想△CEF的形状,并说明理由.(2)若将(1)中的“以AC,BC为边作等边△ACM和△CBN”改为“以AC,BC为腰在AB的同侧作等腰△ACM和△CBN,”如图2,其他条件不变,那么(1)中的结论还成立吗?若成立,加以证明;若不成立,请说明理由.
展开
1个回答
展开全部
(1)如图1,
△CEF是等边三角形,
理由:∵等边△ACM和△CBN,
∴AC=MC,BC=NC,∠ACN=∠MCB,
在△ACN和△MCB中
,
∴△ACN≌△MCB(SAS),
∴AN=MB,∠ANC=∠MBA,
在△NFC和△BEC中,
,
∴△NFC≌△BEC(SAS),
∴EC=CF,
∵∠BCE+∠ECN=60°,∠BCE=∠NCF,
∴∠ECF=60°,
∴△CEF是等边三角形;
(2)如图2,
不成立,首先∠ACN≠∠MCB,
∴△ACN与△MCB不全等.
如果有两个等腰三角形的顶角相等,那么结论也不成立,
证明方法与上面类似,只能得到CE=CF,而∠ECF只等于等腰三角形的顶角≠60°.
△CEF是等边三角形,
理由:∵等边△ACM和△CBN,
∴AC=MC,BC=NC,∠ACN=∠MCB,
在△ACN和△MCB中
|
∴△ACN≌△MCB(SAS),
∴AN=MB,∠ANC=∠MBA,
在△NFC和△BEC中,
|
∴△NFC≌△BEC(SAS),
∴EC=CF,
∵∠BCE+∠ECN=60°,∠BCE=∠NCF,
∴∠ECF=60°,
∴△CEF是等边三角形;
(2)如图2,
不成立,首先∠ACN≠∠MCB,
∴△ACN与△MCB不全等.
如果有两个等腰三角形的顶角相等,那么结论也不成立,
证明方法与上面类似,只能得到CE=CF,而∠ECF只等于等腰三角形的顶角≠60°.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |