高数常微分方程 xy'+e^y=1 y=-in2 x=1 求方程的特解

求具体计算过程谢谢... 求具体计算过程 谢谢 展开
 我来答
xiejings_88
推荐于2016-11-09 · TA获得超过9626个赞
知道大有可为答主
回答量:3619
采纳率:66%
帮助的人:1732万
展开全部
xy'+e^y=1
xy'=1-e^y
dy/(1-e^y)=1/xdx
两边积分:
fdy/(1-e^y)=lnx+c
左边设1-e^y=t y=ln(1-t) dy=-dt/(1-t)
f1/t *(-1/(1-t))dt=f[1/(t-1)-1/t]dt=ln((t-1)/t)+C=-ln[(e^y-1)/e^y]
-ln[(e^y-1)/e^y]=lnx+c
(e^y-1)/e^y=C1/x
y=-ln2 x=1
1-2=c1/x
c1=-1
(1-e^y)/e^y=1/x
e^y=x-xe^y
e^y(1+x)=x
e^y=x/(1+x)
方法正确,自已再算一下。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式