二阶常系数齐次微分方程的特征方程有一对共轭复根r1,2=α±iβ时,为什么它的通解是y=(e∧αx
二阶常系数齐次微分方程的特征方程有一对共轭复根r1,2=α±iβ时,为什么它的通解是y=(e∧αx)(C1cosβx+C2sinβx)?...
二阶常系数齐次微分方程的特征方程有一对共轭复根r1,2=α±iβ时,为什么它的通解是y=(e∧αx)(C1cosβx+C2sinβx)?
展开
- 你的回答被采纳后将获得:
- 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
展开全部
y(x) = c1e^[(α+iβ)x] + c2e^[(α-iβ)x]
= e^(αx) [c1e^(iβx) + c2e^(-iβx)] 下面利用欧拉公式:e^(ix) = cosx + isinx
= e^(αx) [c1(cosβx + isinβx) + c2(cosβx-isinβx)]
= e^(αx) [(c1+c2)cosβx + i(c1-c2)sinβx]
= e^(αx) (C1cosβx + C2sinβx)
C1,2 由初始条件确定.
= e^(αx) [c1e^(iβx) + c2e^(-iβx)] 下面利用欧拉公式:e^(ix) = cosx + isinx
= e^(αx) [c1(cosβx + isinβx) + c2(cosβx-isinβx)]
= e^(αx) [(c1+c2)cosβx + i(c1-c2)sinβx]
= e^(αx) (C1cosβx + C2sinβx)
C1,2 由初始条件确定.
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询