二阶常系数齐次微分方程的特征方程有一对共轭复根r1,2=α±iβ时,为什么它的通解是y=(e∧αx

二阶常系数齐次微分方程的特征方程有一对共轭复根r1,2=α±iβ时,为什么它的通解是y=(e∧αx)(C1cosβx+C2sinβx)?... 二阶常系数齐次微分方程的特征方程有一对共轭复根r1,2=α±iβ时,为什么它的通解是y=(e∧αx)(C1cosβx+C2sinβx)? 展开
 我来答
  • 你的回答被采纳后将获得:
  • 系统奖励15(财富值+成长值)+难题奖励30(财富值+成长值)
yxue
2015-03-20 · TA获得超过2.9万个赞
知道大有可为答主
回答量:1.2万
采纳率:94%
帮助的人:2977万
展开全部
y(x) = c1e^[(α+iβ)x] + c2e^[(α-iβ)x]
= e^(αx) [c1e^(iβx) + c2e^(-iβx)] 下面利用欧拉公式:e^(ix) = cosx + isinx
= e^(αx) [c1(cosβx + isinβx) + c2(cosβx-isinβx)]
= e^(αx) [(c1+c2)cosβx + i(c1-c2)sinβx]
= e^(αx) (C1cosβx + C2sinβx)
C1,2 由初始条件确定.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式