如图,在rt△abc中,∠bac=90°,e、f分别是bc,ac的中点,延长ba到点d,使ad=1/2ab,连结de,df

(1)求证:af与de互相平分(2)若bc=4,求df的长... (1)求证:af与de互相平分
(2)若bc=4,求df的长
展开
终究是虚伪_
2013-06-08
知道答主
回答量:1
采纳率:0%
帮助的人:2.5万
展开全部
(1)证明:连接EF,AE.
∵点E,F分别为BC,AC的中点,
∴EF∥AB,EF=1/2AB
又∵AD=1/2AB,

∴EF=AD.
又∵EF∥AD,
∴四边形AEFD是平行四边形.
∴AF与DE互相平分.
(2)解:在Rt△ABC中,
∵E为BC的中点,BC=4,
∴AE=1/2BC=2.
又∵四边形AEFD是平行四边形,
∴DF=AE=2.

本题考查了平行四边形的判定,有中点时需考虑运用三角形的中位线定理或者直角三角形斜边上的中线等于斜边的一半.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式