如何理解神经网络的学习?学习的目的是什么
2个回答
展开全部
神经网络是如何学习的?看完真是大吃一惊
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
神经网络的学习主要是指使用学习算法来调整神经元间的连接权,使得网路输出更加符合实际。学习算法分为监督学习(Supervised Learning)与无监督学习(Unsupervised Learning)两类:
1、有监督学习算法将一组训练集(Training Set)送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有监督学习算法的主要步骤包括:
a) 从样本集合中取出一个样本(Ai,Bi);
b) 计算网络的实际输出O;
c) 求D = Bi – O;
d) 根据D调整权矩阵W;
e) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。
BP算法就是一种出色的有监督学习算法。
2、无监督学习抽取样本集合中蕴含的统计特性,并以神经元之间的连接权的形式存于网络中。Hebb学习率是一种典型的无监督学习算法。
1、有监督学习算法将一组训练集(Training Set)送入网络,根据网络的实际输出与期望输出间的差别来调整连接权。有监督学习算法的主要步骤包括:
a) 从样本集合中取出一个样本(Ai,Bi);
b) 计算网络的实际输出O;
c) 求D = Bi – O;
d) 根据D调整权矩阵W;
e) 对每个样本重复上述过程,直到对整个样本集来说,误差不超过规定范围。
BP算法就是一种出色的有监督学习算法。
2、无监督学习抽取样本集合中蕴含的统计特性,并以神经元之间的连接权的形式存于网络中。Hebb学习率是一种典型的无监督学习算法。
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询