求左右极限,并判定函数在该点的极限是否存在 f(x)=arctan(1/x), x=0

宇文仙
推荐于2017-09-01 · 知道合伙人教育行家
宇文仙
知道合伙人教育行家
采纳数:20989 获赞数:115016
一个数学爱好者。

向TA提问 私信TA
展开全部
解:
x→0+时1/x→+∞
所以lim(x→0+)arctan(1/x)→limarctan(+∞)=π/2
x→0-时1/x→-∞
所以lim(x→0-)arctan(1/x)→limarctan(-∞)=-π/2
因为lim(x→0+)arctan(1/x)≠lim(x→0-)arctan(1/x)
所以函数在该点的极限不存在
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式