高等数学,
1个回答
展开全部
抛物面满足z'x=x,z'y=y
dS=√[1+(z'x)^2+(z'y)^2] dxdy=√(1+x^2+y^2) dxdy
∫∫zdS=(1/2)∫∫(x^2+y^2)√(1+x^2+y^2) dxdy
=(1/2)∫∫r^2√(1+r^2) rdrdθ
=(1/4)∫(0->2π)dθ ∫(0->√2) r^2√(1+r^2)d(r^2)
=(1/4)∫(0->2π)dθ ∫(0->2) t√(1+t)dt
=(50√5+2)π/15
有帮助请采纳。
dS=√[1+(z'x)^2+(z'y)^2] dxdy=√(1+x^2+y^2) dxdy
∫∫zdS=(1/2)∫∫(x^2+y^2)√(1+x^2+y^2) dxdy
=(1/2)∫∫r^2√(1+r^2) rdrdθ
=(1/4)∫(0->2π)dθ ∫(0->√2) r^2√(1+r^2)d(r^2)
=(1/4)∫(0->2π)dθ ∫(0->2) t√(1+t)dt
=(50√5+2)π/15
有帮助请采纳。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询