
这道构造等比数列的思想是什么?为什么要这么做? 30
2个回答
展开全部
2bn = 5b(n+1) + 1/2
b(n+1) = (2/5)bn - 1/10
b(n+1) + k = (2/5) [ bn + k ]
=>
-(3/5) k = -1/10
k = 1/6
2bn = 5b(n+1) + 1/2
b(n+1) = (2/5)bn - 1/10
b(n+1) + 1/6 = (2/5) [ bn + 1/6 ]
设
cn = bn + 1/6
b(n+1) + 1/6 = (2/5) [ bn + 1/6 ]
cn = (2/5) c(n-1)
=> { cn } 是等比数列 , q= 2/5
cn = (2/5)^(n-1) .c1
b(n+1) = (2/5)bn - 1/10
b(n+1) + k = (2/5) [ bn + k ]
=>
-(3/5) k = -1/10
k = 1/6
2bn = 5b(n+1) + 1/2
b(n+1) = (2/5)bn - 1/10
b(n+1) + 1/6 = (2/5) [ bn + 1/6 ]
设
cn = bn + 1/6
b(n+1) + 1/6 = (2/5) [ bn + 1/6 ]
cn = (2/5) c(n-1)
=> { cn } 是等比数列 , q= 2/5
cn = (2/5)^(n-1) .c1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询