在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)若sin...
在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)若sinB+sinC=1,试判...
在三角形ABC中,a,b,c分别为内角A,B,C的对边,且2asinA=(2b+c)sinB+(2c+b)sinC.(1)求A的大小;(2)若sinB+sinC=1,试判断三角形ABC的形状。谢谢各位大侠
展开
3个回答
展开全部
正弦定理:a/sinA=b/sinB=c/sinC 上式简化为:a^2=b^2+c^2+bc
也就是:(b^2+c^2-a^2)/2bc=-1/2 余弦定理:cosA=(b^2+c^2-a^2)/2bc=-1/2
所以:A=120度 http://z.baidu.com/question/185103838.html?fr=ala0
也就是:(b^2+c^2-a^2)/2bc=-1/2 余弦定理:cosA=(b^2+c^2-a^2)/2bc=-1/2
所以:A=120度 http://z.baidu.com/question/185103838.html?fr=ala0
展开全部
解:
(1)由已知:2asinA=(2b+c)sinB+(2c+b)sinC
,根据正弦定理得:
2a2=(2b+c)b+(2c+b)c,
即:a2=b2+c2+bc
由余弦定理得:a2=b2+c2-2bccosA
所以:cosA=-1/2,
所以 A=120°
(2)由(1)得:sin2A=sin2B+sin2C+sinBsinC
又:sinB+sinC=1,
得:sinB=sinC=1/2
因为0°< B < 90°, 0°< C < 90°,
所以:B=C
所以△ABC是等腰的钝角三角形。
(1)由已知:2asinA=(2b+c)sinB+(2c+b)sinC
,根据正弦定理得:
2a2=(2b+c)b+(2c+b)c,
即:a2=b2+c2+bc
由余弦定理得:a2=b2+c2-2bccosA
所以:cosA=-1/2,
所以 A=120°
(2)由(1)得:sin2A=sin2B+sin2C+sinBsinC
又:sinB+sinC=1,
得:sinB=sinC=1/2
因为0°< B < 90°, 0°< C < 90°,
所以:B=C
所以△ABC是等腰的钝角三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询