等价的向量组秩一定相等吗

 我来答
教育小百科达人
2019-05-18 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:473万
展开全部

等价的向量组秩不一定相等。A组与B组等价的充要条件是 R(A)=R(A,B)=R(B)。

如果向量组的秩都等于整个线性空间的秩,则都组成线性空间的基,必互相等价。否则(如果秩小于整个线性空间的秩)未必成立:例如{(1,0)}和{(0,1)}都是二维欧式空间R^2中的向量组,秩都是1,但(1,0)不能写成(0,,1)的倍数,(0,1)也不能写成(1,0)的倍数,所以不一定相等。

等价的向量组的秩相等,但是秩相等的向量组不一定等价。

向量组A:a1,a2,…am与向量组B:b1,b2,…bn的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。

扩展资料:

等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。

任一向量组和它的极大无关组等价。向量组的任意两个极大无关组等价。两个等价的线性无关的向量组所含向量的个数相同。等价的向量组具有相同的秩,但秩相同的向量组不一定等价。

一个m行n列的矩阵可以看做是m个行向量构成的行向量组,也可看做n个列向量构成的列向量组。行向量组的秩成为行秩,列向量组的秩成为列秩,容易证明行秩等于列秩,所以就可成为矩阵的秩。

矩阵的秩在线性代数中有着很大的应用,可以用于判断逆矩阵和线性方程组解的计算等方面。

参考资料来源:百度百科——等价向量组

是你找到了我
高粉答主

2019-05-21 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:42.7万
展开全部

等价的向量组秩一定相等。等价的向量组具有相同的秩,但是秩相同的向量组不一定等价。

设有n维向量组Ⅰ和n维向量组Ⅱ。如果Ⅰ中任一向量都可由Ⅱ中向量线性表示,反之Ⅱ中任一向量都可由Ⅰ中向量线性表示,那么则称向量组Ⅰ与Ⅱ等价。一个向量组的极大线性无关组所包含的向量的个数,称为向量组的秩

向量组A与向量组B的等价秩相等条件是R(A)=R(B)=R(A,B),其中A和B是向量组A和B所构成的矩阵。

扩展资料:

向量组等价的基本判定是:两个向量组可以互相线性表示。

等价向量组的性质:

1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。

2、任一向量组和它的极大无关组等价。

3、向量组的任意两个极大无关组等价。

4、两个等价的线性无关的向量组所含向量的个数相同。

5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。

6、如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。

参考资料来源:百度百科-等价向量组

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2019-04-22 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:745万
展开全部

等价的向量组秩不一定相等。

A组与B组等价的充要条件是 R(A)=R(A,B)=R(B)

如果向量组的秩都等于整个线性空间的秩,则都组成线性空间的基,必互相等价。否则(如果秩小于整个线性空间的秩)未必成立:例如{(1,0)}和{(0,1)}都是二维欧式空间R^2中的向量组,秩都是1,但(1,0)不能写成(0,1)的倍数,(0,1)也不能写成(1,0)的倍数,所以不一定相等。

扩展资料

1、等价向量组具有传递性、对称性及反身性。但向量个数可以不一样,线性相关性也可以不一样。

2、任一向量组和它的极大无关组等价。

3、向量组的任意两个极大无关组等价。

4、两个等价的线性无关的向量组所含向量的个数相同。

5、等价的向量组具有相同的秩,但秩相同的向量组不一定等价。

6、如果向量组A可由向量组B线性表示,且R(A)=R(B),则A与B等价。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小猫学术分享
2019-08-16 · 一只分享学术的小猫,一起进步呀
小猫学术分享
采纳数:2 获赞数:51

向TA提问 私信TA
展开全部
一定相等
首先,如果一个向量组A能由向量组B线性表示,则r(A)≤r(B)
其次,A和B等价,则A和B能够互相线性表示
因此有,r(A)≤r(B),且r(B)≤r(A)
得出,r(A)=r(B)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
luodongmei1985
高粉答主

推荐于2017-12-16 · 醉心答题,欢迎关注
知道大有可为答主
回答量:1.3万
采纳率:88%
帮助的人:1183万
展开全部
一个向量组与自身包含的极大线性无关组等价,两个等价的向量组呢?
当然是两个极大线性无关组也等价,也就是秩相同,这是一定的.
追答
证明:等价的向量组具有相同的秩

把两个向量组分别排列成矩阵,设为A和B.由两者等价,存在可逆矩阵P使得A=PB.
由A=PB,知rank(A)=rank(PB)<=rank(B);
由B=P^(-1)A,知rank(B)=rank(P^(-1)A)<=rank(A);
从而rank(A)=rank(B)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式