第15题,第二问是怎么算的?
展开全部
2Sn=an^2+an
2S(n-1)=a(n-1)^2+a(n-1)
2[Sn-S(n-1)]=an^2-a(n-1)^2+an-a(n-1)
2an=an^2-a(n-1)^2+an-a(n-1)
an^2-a(n-1)^2-an-a(n-1)=0
[an+a(n-1)][an-a(n-1)-1]=0
因an+a(n-1)不为0
an-a(n-1)-1=0
an-a(n-1)=1
{an}是公差为1,等差数列
an=n
1/a1*a2+1/a2a3+...+1/ana(n+1)
=1/1*2+1/2*3+...+1/n(n+1)
=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)]
=1-[1/(n+1)<1
所以,1/a1*a2+1/a2a3+...+1/ana(n+1)<1
2S(n-1)=a(n-1)^2+a(n-1)
2[Sn-S(n-1)]=an^2-a(n-1)^2+an-a(n-1)
2an=an^2-a(n-1)^2+an-a(n-1)
an^2-a(n-1)^2-an-a(n-1)=0
[an+a(n-1)][an-a(n-1)-1]=0
因an+a(n-1)不为0
an-a(n-1)-1=0
an-a(n-1)=1
{an}是公差为1,等差数列
an=n
1/a1*a2+1/a2a3+...+1/ana(n+1)
=1/1*2+1/2*3+...+1/n(n+1)
=(1-1/2)+(1/2-1/3)+...+[1/n-1/(n+1)]
=1-[1/(n+1)<1
所以,1/a1*a2+1/a2a3+...+1/ana(n+1)<1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询