1/sin²x的不定积分
解析如下:
∫1/(sinx)^2 dx
= ∫(cscx)^2dx
= -cotx + C
所以1/sin²x的不定积分是-cotx + C,其中C为积分函数。
在微积分中,一个函数f 的不定积分,或原函数,或反导数,是一个导数等于f 的函数 F ,即F ′ = f。不定积分和定积分间的关系由微积分基本定理确定。其中F是f的不定积分。
扩展资料:
积分方法:
1、积分公式法
直接利用积分公式求出不定积分。
2、换元积分法
换元积分法可分为第一类换元法与第二类换元法。
3、分部积分法
设函数和u,v具有连续导数,则d(uv)=udv+vdu。移项得到udv=d(uv)-vdu,两边积分,得分部积分公式∫udv=uv-∫vdu。
1/sin²x的不定积分: -cotx + C。C为积分函数。
解答过程如下:
∫1/(sinx)^2 dx
= ∫(cscx)^2dx
= -cotx + C
扩展资料:
同角三角函数的基本关系式
倒数关系:tanα ·cotα=1、sinα ·cscα=1、cosα ·secα=1;
商的关系: sinα/cosα=tanα=secα/cscα、cosα/sinα=cotα=cscα/secα;
和的关系:sin2α+cos2α=1、1+tan2α=sec2α、1+cot2α=csc2α;
平方关系:sin²α+cos²α=1。
常用积分公式:
1)∫0dx=c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4)∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(1-x^2) dx=arcsinx+c
广告 您可能关注的内容 |